• DOI 10.31509/2658-607x-2021-44-95
  • УДК 630*182.59+547.45(470)


A. I. Kuznetsovа

Center for Forest Ecology and Productivity of the Russian Academy of Sciences,

Profsoyuznaya st. 84/32 bldg. 14, 117997, Moscow, Russia

E-mail: nasta472288813@yandex.ru

Received 15 November 2021

Revised 17 December 2021

Accepted 18 December 2021

Existing estimates of carbon stocks in taiga and coniferous-deciduous forests show that almost half of the total organic carbon in these ecosystems is accumulated in forest soils. Vegetation as the main source of organic matter in the soil, interact with soil biota, which processes plant litter, and with abiotic environmental factors, determines the processes of formation and accumulation of soil organic matter. Changes in the composition of vegetation are the driver of the dynamics of soil carbon stocks; however, insufficient attention has been paid to the analysis of this issue. The review analyzes the main ways of transferring carbon from the vegetation pool to the soil pool and the influence of three main predictors of vegetation that affect the carbon stock in soils: the amount and quality of litter of individual species (species identity) of plants and the structural diversity of the plant community; gaps in knowledge and the ways of development of this scientific direction are proposed.

 Key words: vegetation, litter, soil, carbon stock, litter quality, litter amount, biogeocenotic heterogeneity


Akkumuljacija ugleroda v lesnyh pochvah i sukcessionnyj status lesov (Carbon accumulation in forest soils and the successive status of forests), Ed. by N. V. Lukina, Moscow: Tovarishhestvo nauchnyh izdanij KMK, 2018, 232 p.

Albrektson A., Needle litterfall in stands of Pinus sylvestris L. in Sweden, in relation to site quality, stand age and latitude, Scandinavian Journal of Forest Research, 1988, Vol. 3, No 1–4, pp. 333–342.

Alvarez R., Lavado R. S., Climate, organic matter and clay content relationships in the Pampa and Chaco soils, Argentina, Geoderma, 1998, Vol. 83, No 1–2, pp. 127–141.

Amelung W., Zhang X., Flach K. W., Zech W., Amino sugars in native grassland soils along a climosequence in North America, Soil Science Society of America Journal, 1999, Vol. 63, No 1, pp. 86–92.

Amundson R., The carbon budget in soils, Annual Review of Earth and Planetary Sciences, 2001, Vol. 29, No 1, pp. 535–562.

Angst G., John S., Mueller C. W., Kögel-Knabner I., Rethemeyer J., Tracing the sources and spatial distribution of organic carbon in subsoils using a multi-biomarker approach, Scientific reports, 2016, Vol. 6, No 1, pp. 1–12.

Angst G., Messinger J., Greiner M., Häusler W., Hertel D., Kirfel K., Mueller C. W. Soil organic carbon stocks in topsoil and subsoil controlled by parent material, carbon input in the rhizosphere, and microbial-derived compounds, Soil Biology and Biochemistry, 2018, Vol. 122, pp. 19–30.

Angst G., Mueller K. E., Kögel-Knabner I., Freeman K. H., Mueller C. W., Aggregation controls the stability of lignin and lipids in clay-sized particulate and mineral associated organic matter, Biogeochemistry, 2017, Vol. 132, No 3, pp. 307–324.

Angst G., Mueller K. E., Nierop K. G., Simpson M. J., Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter, Soil Biology and Biochemistry, 2021, Vol. 156, No 1–3, pp. 108–189.

Angst Š., Mueller C. W., Cajthaml T., Angst G., Lhotáková Z., Bartuška M., … & Frouz J., Stabilization of soil organic matter by earthworms is connected with physical protection rather than with chemical changes of organic matter, Geoderma, 2017, Vol. 289, pp. 29–35.

Anohina N. A., Biogennye uglevodorody v pochvah parkovyh zon goroda Moskvy. Avtoref. diss. kand. biol. nauk (Biogenic hydrocarbons in the soils of park zones of the city of Moscow. Abstract of candidate’s thesis), Moscow: MSU, 2020, 25 p.

Badgery W. B., Simmons A. T., Murphy B. M., Rawson A., Andersson K. O., Lonergan V. E., van de Ven R., Relationship between environmental and land-use variables on soil carbon levels at the regional scale in central New South Wales, Australia, Soil Research, 2013, Vol. 51, No 8, pp. 645–656.

Baeva Y. I., Kurganova I. N., De Gerenyu V. L., Pochikalov A. V., Kudeyarov V. N., Changes in physical properties and carbon stocks of gray forest soils in the southern part of Moscow region during postagrogenic evolution, Eurasian soil science, 2017, Vol. 50, No 3, pp. 327–334.

Bakhmet O. N., Carbon deposits in soils of pine and spruce forests of Karelia, Contemporary Problems of Ecology, 2018, Vol. 11, No 7, pp. 697–703.

Bakhshandeh-Navroud B., Abrari Vajari K., Pilehvar B., Kooch Y., The interactions between tree-herb layer diversity and soil properties in the oriental beech (Fagus orientalis Lipsky) stands in Hyrcanian forest, Environ. Monit. Assess., 2018, Vol. 190, 425 p.

Bardgett R., The biology of soil: a community and ecosystem approach, Oxford university press, 2005.

Baritz R., Seufert G., Montanarella L., Van Ranst E., Carbon concentrations and stocks in forest soils of Europe, Forest Ecology and Management, 2010, Vol. 260, No 3, pp. 262–277.

Berg B., Berg M. P., Bottner P., Box E., Breymeyer A., De Anta R. C., … & de Santo A. V., Litter mass loss rates in pine forests of Europe and Eastern United States: some relationships with climate and litter quality, Biogeochemistry, 1993, Vol. 20, No 3, pp. 127–159.

Berg B., Litter decomposition and organic matter turnover in northern forest soils, Forest Еcology and Management, 2000, Vol. 133, No 1–2, pp. 13–22.

Berg B., McClaugherty C., Plant Litter. 4th ed. Cham, Switzerland: Springer, 2020. 332 p.

Blume H.-P., Fleige H., Horn R., Kandeler E., Kogel-Knabner I., Kretzschmar R., Stahr K., Wilke B.-M. Soil Science, first ed. Springer Berlin Heidelberg, Berlin Heidelberg, 2015, 630 р.

Brassard B. W. Chen H. Y., Bergeron Y., Paré D., Differences in fine root productivity between mixed‐ and single‐species stands, Functional Ecology, 2011, Vol. 25, No. 1, pp. 238–246.

Brassard B. W., Chen H. Y., Cavard X., Laganière J., Reich P. B., Bergeron Y., Yuan Z., Tree species diversity increases fine root productivity through increased soil volume filling, Journal of Ecology, 2013, Vol. 101, No 1, pp. 210–219.

Bruckman D., Campbell D. R., Pollination of a native plant changes with distance and density of invasive plants in a simulated biological invasion, American journal of botany, 2016, Vol. 103, No 8, pp. 1458–1465.

Brussaard L., Biodiversity and ecosystem functioning in soil, Ambio, 1997, pp. 563–570.

Bull I. D. van Bergen P. F., Nott C. J., Poulton P. R., Evershed R. P., Organic geochemical studies of soils from the Rothamsted classical experiments — V. The fate of lipids in different long-term experiments, Organic geochemistry, 2000, Vol. 31, No 5, pp. 389–408.

Burke I. C., Yonker C. M., Parton W. J., Cole C. V., Flach K., Schimel D. S., Texture, climate, and cultivation effects on soil organic matter content in US grassland soils, Soil science society of America journal, 1989, Vol. 53, No 3, pp. 800–805.

Cadisch G., Giller K. E., Driven by natureplant litter quality and decomposition, Wallingford, Oxon, UK: CAB International, 1997, 409 p.

Callesen I., Liski J., Raulund‐Rasmussen K., Olsson M. T., Tau‐Strand L., Vesterdal L., Westman C. J., Soil carbon stores in Nordic well‐drained forest soils — Relationships with climate and texture class, Global change biology, 2003, Vol. 9, No 3, pp. 358–370.

Canessa R., van den Brink L., Saldaña A., Rios R. S., Hättenschwiler S., Mueller C. W., … & Bader M. Y., Relative effects of climate and litter traits on decomposition change with time, climate and trait variability, Journal of Ecology, 2021, Vol. 109, No 1, pp. 447–458.

Carreiro M. M. Sinsabaugh R. L., Repert D. A., Parkhurst D. F., Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition, Ecology, 2000, Vol. 81, No 9, pp. 2359–2365.

Carrington E. M., Hernes P. J., Dyda R. Y., Plante A. F., Six J., Biochemical changes across a carbon saturation gradient: lignin, cutin, and suberin decomposition and stabilization in fractionated carbon pools, Soil Biology and Biochemistry, 2012, Vol. 47, pp. 179–190.

Castellano M. J., Mueller K. E., Olk D. C., Sawyer J. E., Six J., Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept, Global change biology, 2015, Vol. 21, No 9, pp. 3200–3209.

Chen H. Y. H., Brant A. N., Seedre M., Brassard B. W., Taylor A. R., The contribution of litterfall to net primary production during secondary succession in the boreal forest, Ecosystems, 2017, Vol. 20, No 4, pp. 830–844.

Chernova O. V., Ryzhova I. M., Podvezennaja M. A., Ocenka zapasov organicheskogo ugleroda lesnyh pochv v regional’nom masshtabe (Assessment of organic carbon stocks of forest soils on a regional scale), Pochvovedenie, 2020, No 3, pp. 340–350.

Chestnyh O. V., Grabovskij V. I., Zamolodchikov D. G., Uglerod pochv lesnyh rajonov Evropejsko-Ural’skoj chasti Rossii (Soil carbon in forest areas of the European-Ural part of Russia), Voprosy lesnoj nauki, 2020, Vol. 3, No 2, pp. 1–15.

Chestnyh O. V., Lyzhin V. A., Koksharova A. V., Zapasy ugleroda v podstilkah lesov Rossii (The Carbon Reserves in Litters of Forests in Russia), Lesovedenie, 2007, No 6, pp. 114–121.

Clemente J. S., Simpson M. J., Physical protection of lignin by organic matter and clay minerals from chemical oxidation, Organic geochemistry, 2013, Vol. 58, pp. 1–12.

Córdova S. C., Olk D. C., Dietzel R. N., Mueller K. E., Archontouilis S. V., Castellano M. J., Plant litter quality affects the accumulation rate, composition, and stability of mineral-associated soil organic matter, Soil Biology and Biochemistry, 2018, Vol. 125, pp. 115–124. 

Cornwell W. K., Cornelissen J. H., Amatangelo K., Dorrepaal E., Eviner V. T., Godoy O., Quested H. M., Plant species traits are the predominant control on litter decomposition rates within biomes worldwide, Ecology letters, 2008, Vol. 11, No 10, pp. 1065–1071.

Cotrufo M. F., Wallenstein M. D., Boot C. M., Denef K., Paul E., The microbial efficiency‐matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Global change biology, 2013, Vol. 19, No 4, pp. 988–995.

Cusack D. F. Chou W. W., Yang W. H., Harmon M. E., Silver W. L., L. Team, Controls on long‐term root and leaf litter decomposition in neotropical forests, Global Change Biology, 2009, Vol. 15, No 5, pp. 1339–1355.

Dawud S. M., Raulund-Rasmussen K., Domisch T., Finér L., Jaroszewicz B., Vesterdal L., Is tree species diversity or species identity the more important driver of soil carbon stocks, C/N ratio, and pH? Ecosystems, 2016, Vol. 19, No 4, pp. 645–660.

De Brogniez D., Ballabio C., van Wesemael B., Jones R. J., Stevens A., Montanarella L., Topsoil organic carbon map of Europe [in:] Soil Carbon, Cham: Springer, 2014, pp. 393–405.

De Wit H. A., Kvindesland S. Carbon stocks in Norwegian forest soils and effects of forest management on carbon storage, Norsk institutt for skogforskning, 1999, 59 р.

Demakov Ju. P., Isaev A. V., Nureev N. B., Mitjakova I. I., Granicy i prichiny variabel’nosti zapasov gumusa v pochvah lesov Srednego Povolzh’ja (The boundaries and reasons for the variability of humus reserves in the soils of the forests of the Middle Volga region), Vestnik Povolzhskogo gosudarstvennogo tehnologicheskogo universiteta. Serija: Les. Jekologija. Prirodopol’zovanie, 2018, No 3, рр. 30–49.

Diaz S. Grime J. P., Harris J., McPherson E., Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide, Nature, 1993, Vol. 364, No 6438, pp. 616–617.

Dijkstra F. A., Cheng W., Interactions between soil and tree roots accelerate long‐term soil carbon decomposition, Ecology Letters, 2007, Vol. 10, No 11, pp. 1046–1053.

Dijkstra F. A., Fitzhugh R. D., Aluminum solubility and mobility in relation to organic carbon in surface soils affected by six tree species of the northeastern United States, Geoderma, 2003, Vol. 114, No 1–2, pp. 33–47.

Dungait J. A. J., Hopkins D. W., Gregory A. S., Whitmore A. P., Soil organic matter turnover is governed by accessibility not recalcitrance, Global Change Biology, 2012, Vol. 18, No 6, pp. 1781–1796.

Dyer M. L., Meentemeyer V., Berg B., Apparent controls of mass loss rate of leaf litter on a regional scale: litter quality vs. climate, Scandinavian Journal of Forest Research, 1990, Vol. 5, No 1–4, pp. 311–323.

Dymov A. A., Pochvy poslerubochnyh, postpirogennyh i postagrogennyh lesnyh jekosistem severo-vostoka evropejskoj chasti Rossii, Avtoref. diss. doct. biol. nauk (Soils of post-cutting, post-pyrogenic and post-agrogenic forest ecosystems in the northeast of the European part of Russia. Abstract of doctor’s thesis), Moscow: MSU, 2018, 46 p.

Ershov V. V., Lukina N. V., Orlova M. A., Isaeva L. G., Smirnov V. Je., Gorbacheva T. T., Ocenka dinamiki sostava pochvennyh vod severotaezhnyh lesov pri snizhenii ajerotehnogennogo zagrjaznenija vybrosami medno-nikelevogo kombinata, Sibirskij jekologicheskij zhurnal, 2019, Vol. 26, No 1, pp. 119–132.

Ershov V. V., Monitoring sostava atmosfery i pochvennyh vod v lesnyh jekosistemah: osnovnye jetapy i perspektivy (Assessment of the dynamics of the composition of soil waters in northern taiga forests with a decrease in airborne industrial pollution by emissions from the copper-nickel plant), Voprosy lesnoj nauki, 2021, Vol. 4, No 1, pр 1–34.

Feng X., Simpson A. J., Simpson M. J., Chemical and mineralogical controls on humic acid sorption to clay mineral surfaces, Organic Geochemistry, 2005, Vol. 36, pp. 1553–1566.

Feng X., Simpson M. J., The distribution and degradation of biomarkers in Alberta grassland soil profiles, Organic Geochemistry, 2007, Vol. 38, No 9, pp. 1558–1570.

Finzi A. C., Van Breemen N., Canham C. D., Canopy tree–soil interactions within temperate forests: species effects on soil carbon and nitrogen, Ecological applications, 1998, Vol. 8, No 2, pp. 440–446.

Fox O. Vetter S., Ekschmitt K., Wolters V., Soil fauna modifies the recalcitrance-persistence relationship of soil carbon pools, Soil Biology and Biochemistry, 2006, Vol. 38, No 6, pp. 1353–1363.

Framstad E., de Wit H., Mäkipää R., Larjavaara M., Vesterdal L., Karltun E. Biodiversity, carbon storage and dynamics of old northern forest, Copenhagen: Nordic Council of Ministers, 2013, 130 p.

Fröberg M., Hansson K., Kleja D. B., Alavi Gh., Dissolved organic carbon and nitrogen leaching from Scots pine, Norway spruce and silver birch stands in southern Sweden, Forest ecology and management, 2011, Vol. 262, No 9, pp. 1742–1747.

Frouz J., Effects of soil macro- and mesofauna on litter decomposition and soil organic matter stabilization, Geoderma, 2018, Vol. 332, pp. 161–172.

Frouz J., Livečková M., Albrechtová J., Chroňáková A., Cajthaml T., Pižl V., Háněl L., Starý J., Baldrian P., Lhotáková Z., Is the effect of trees on soil properties mediated by soil fauna? A case study from post-mining sites, Forest Ecology and Management, 2013, Vol. 309, pp. 87–95.

Gentile R., Vanlauwe B., Six J., Litter quality impacts short‐ but not long‐term soil carbon dynamics in soil aggregate fractions, Ecological Applications, 2011, Vol. 21, No 3, pp. 695–703.

Geraskina A. P., Vlijanie dozhdevyh chervej raznyh morfo-jekologicheskih grupp na akkumuljaciju ugleroda v lesnyh pochvah (Influence of earthworms of different morpho-ecological groups on the accumulation of carbon in forest soils), Voprosy lesnoj nauki, 2020, Vol. 3, No 2, pp. 1–20.

Gielen B., Neirynck J., Luyssaert S., Janssens I. A., The importance of dissolved organic carbon fluxes for the carbon balance of a temperate Scots pine forest, Agricultural and Forest Meteorology, 2011, Vol. 151, No 3, pp. 270–278.

Gill R. A., Jackson R. B., Global patterns of root turnover for terrestrial ecosystems, The New Phytologist, 2000, Vol. 147, No 1, pp. 13–31.

Gleixner G., Soil organic matter dynamics: a biological perspective derived from the use of compound-specific isotopes studies, Ecological Research, 2013, Vol. 28, No 5, pp. 683–695.

Gmach M. R., Kaiser K., Cherubin M. R., Cerri C. E. P., Lisboa I. P., Vasconcelos A. L. S., Siqueira‐Neto M., Soil dissolved organic carbon responses to sugarcane straw removal, Soil Use and Management, 2020, Vol. 37, No 1, pp. 126–137.

Gower S. T., Son Y., Differences in soil and leaf litterfall nitrogen dynamics for five forest plantations, Soil Science Society of America Journal, 1992, Vol. 56, No 6, pp. 1959–1966.

Grandy A. S., Neff J. C., Molecular C dynamics downstream: the biochemical decomposition sequence and its impact on soil organic matter structure and function, Science of the Total Environment, 2008, Vol. 404, No 2–3, pp. 297–307.

Gray J. M., Bishop T. F. A., Smith P. L., Digital mapping of pre-European soil carbon stocks and decline since clearing over New South Wales, Australia, Soil Research, 2016, Vol. 54, No 1, pp. 49–63.

Gunina A., Kuzyakov Y., Sugars in soil and sweets for microorganisms: Review of origin, content, composition and fate, Soil Biology and Biochemistry, 2015, Vol. 90, pp. 87–100.

Gunina A., Ryzhova I., Dorodnikov M., Kuzyakov Y., Effect of plant communities on aggregate composition and organic matter stabilisation in young soils, Plant and Soil, 2015, Vol. 387, No 1, pp. 265–275.

Hagedorn F., Spinnler D., Siegwolf R., Increased N deposition retards mineralization of old soil organic matter, Soil Biology and Biochemistry, 2003, Vol. 35, No 12, pp. 1683–1692.

Hagen-Thorn A., Callesen I., Armolaitis K., Nihlgård B., The impact of six European tree species on the chemistry of mineral topsoil in forest plantations on former agricultural land, Forest ecology and management, 2004, Vol. 195, No 3, pp. 373–384.

Heim A., Frey B., Early stage litter decomposition rates for Swiss forests, Biogeochemistry, 2004, Vol. 70, No 3, pp. 299–313.

Hilli S., Significance of litter production of forest stands and ground vegetation in the formation of organic matter and storage of carbon in boreal coniferous forests [in:] Forest condition monitoring in Finland — National report (Eds. P. Merilä, S. Jortikka), The Finnish Forest Research Institute, 2013, URL: https://clck.ru/agP2L (November 21, 2021).

Hobbie S. E., Temperature and plant species control over litter decomposition in Alaskan tundra, Ecological monographs, 1996, Vol. 66, No 4, pp. 503–522.

Hobley E., Wilson B., Wilkie A., Gray J., Koen T., Drivers of soil organic carbon storage and vertical distribution in Eastern Australia, Plant and Soil, 2015, Vol. 390, No 1, pp. 111–127.

Huang W., Gonzalez G., Zou X., Earthworm abundance and functional group diversity regulate plant litter decay and soil organic carbon level: A global meta-analysis, Applied Soil Ecology, 2020, Vol. 150, pp. 1–15.

Huang Y., Ma Y., Zhao K., Niklaus P. A., Schmid B., He J. S., Positive effects of tree species diversity on litterfall quantity and quality along a secondary successional chronosequence in a subtropical forest, Journal of Plant Ecology, 2017, Vol. 10, No 1, pp. 28–35.

Ivanova E. A., Formirovanie i razlozhenie drevesnogo opada v lesnyh jekosistemah v fonovyh uslovijah i pri ajerotehnogennom zagrjaznenii (Formation and decomposition of tree litter in forest ecosystems under background conditions and during airborne industrial pollution), Voprosy lesnoj nauki, 2021, Vol. 4, No. 3, pp. 1–52.

Jandl G. Leinweber P., Schulten H. R., Ekschmitt K., Contribution of primary organic matter to the fatty acid pool in agricultural soils, Soil Biology and Biochemistry, 2005, Vol. 37, No 6, pp. 1033–1041.

Jandl R., Lindner M., Vesterdal L., Bauwens B., Baritz R., Hagedorn F., Byrne K. A., How strongly can forest management influence soil carbon sequestration? Geoderma, 2007, Vol. 137, No 3–4, pp. 253–268.

Jobbаgy E. G., Jackson R. B., The vertical distribution of soil organic carbon and its relation to climate and vegetation, Ecological applications, 2000, Vol. 10, No 2, pp. 423–436.

Joly F. X., Milcu A., Scherer‐Lorenzen M., Jean L. K., Bussotti F., Dawud S. M., … & Hättenschwiler S., Tree species diversity affects decomposition through modified micro‐environmental conditions across European forests, New Phytologist, 2017, Vol. 214, No 3, pp. 1281–1293.

Kaiser K., Guggenberger G., Haumaier L., Changes in dissolved lignin-derived phenols, neutral sugars, uronic acids, and amino sugars with depth in forested Haplic Arenosols and Rendzic Leptosols, Biogeochemistry, 2004, Vol. 70, No 1, pp. 135–151.

Kaiser K., Zech W., Dissolved organic matter sorption by mineral constituents of subsoil clay fractions, Journal of Plant Nutrition and Soil Science, 2000, Vol. 163, No 5, pp. 531–535.

Kalbitz K. Solinger S., Park J. H., Michalzik B., Matzner E., Controls on the dynamics of dissolved organic matter in soils: a review, Soil science, 2000, Vol. 165, No 4, pp. 277–304.

Kalbitz K., Kaiser K., Bargholz J., Dardenne P., Lignin degradation controls the production of dissolved organic matter in decomposing foliar litter, European Journal of Soil Science, 2006, Vol. 57, No 4, pp. 504–516.

Kalbitz K., Kaiser K., Contribution of dissolved organic matter to carbon storage in forest mineral soils, Journal of Plant Nutrition and Soil Science, 2008, Vol. 171, pp. 52–60.

Karavanova E. I., Dissolved organic matter: Fractional composition and sorbability by the soil solid phase (review of literature), Eurasian Soil Science, 2013, Vol. 46, No 8, pp. 833–844.

Karavanova E. I., Zolovkina D. F., Stepanov A. A., Interaction of the Water-Soluble Organic Substances of Coniferous Litter with Minerals and Horizons of Podzolic Soil and Podzols, Eurasian Soil Science, 2020, Vol. 53, No 9, pp. 1234–1246.

Karelin D. V., Pochikalov A. V., Zamolodchikov D. G., Jeffekt usilenija jemissii СO2 v oknah raspada lesov Valdaja (Effect of increased CO2 emission in the decay windows of Valdai forests), Izvestija Rossijskoj akademii nauk. Serija geograficheskaja, 2017, No 2, pp. 60–68.

Karpachevskij L. O., Pestrota pochvennogo pokrova v lesnom biogeocenoze (Diversity of soil cover in forest biogeocenosis), Moscow: Izd-vo mosk.un-ta, 1977, 312 p.

Kazimirov N. I., Obmen veshhestv i jenergii v sosnovyh lesah Evropejskogo Severa (Metabolism and energy in pine forests of the European North), Leningrad: Nauka, 1977, 301 p.

Kiem R., Kögel-Knabner I., Contribution of lignin and polysaccharides to the refractory carbon pool in C-depleted arable soils, Soil Biology and Biochemistry, 2003, Vol. 35, No 1, pp. 101–118.

Knorr M., Frey S. D., Curtis P. S., Nitrogen additions and litter decomposition: A meta‐analysis, Ecology, 2005, Vol. 86, No 12, pp. 3252–3257.

Kogut B. M., Semenov V. M., Ocenka nasyshhennosti pochvy organicheskim uglerodom (Assessment of soil organic carbon saturation), Bjulleten’ Pochvennogo instituta im. V. V. Dokuchaeva, 2020, No 102, pp. 103–124.

Kovalev I. V., Kovaleva N. O., Pul ligninovyh fenolov v pochvah lesnyh jekosistem (Pool of lignin phenols in soils of forest ecosystems), Lesovedenie, 2016, No 2, pp. 148–160.

Krishna M. P., Mohan M., Litter decomposition Pinе forest ecosystems: a review, Energy, Ecology and Environment, 2017, Vol. 2, No 4, pp. 236–249.

Kuznetsova A. I., Geraskina A. P., Lukina N. V., Smirnov V. E., Tikhonova E. V., Shevchenko N. E., Gornov A. V., Ruchinskaya E. V., Tebenkova D. N., Linking Vegetation, Soil Carbon Stocks, and Earthworms in Upland Coniferous–Broadleaf Forests, Forests, 2021, Vol. 12, Article 1179.

Kuznetsova A. I., Lukina N. V., Gornov A. V., Gornova M. V., Tikhonova E. V., Smirnov V. E., … Genikova N. V., Carbon Stock in Sandy Soils of Pine Forests in the West of Russia, Eurasian Soil Science, 2020, Vol. 53, pp. 1056–1065.

Kuznetsova A. I., Lukina N. V., Tikhonova E. V., Gornov A. V., Gornova M. V., Smirnov V. E., Geraskina A. P., Shevchenko N. E., Tebenkova D. N., Chumachenko S. I., Carbon Stock in Sandy and Loamy Soils of Coniferous–Broadleaved Forests at Different Succession Stages, Eurasian Soil Science, 2019, Vol. 52, No 7, pp. 756–768.

Kuzyakov Y., Domanski G., Carbon input by plants into the soil. Review, Journal of Plant Nutrition and Soil Science, 2000, Vol. 163, No 4, pp. 421–431.

Laganiere J., Paré D., Bergeron Y., Chen H. Y., Brassard B. W., Cavard X., Stability of soil carbon stocks varies with forest composition in the Canadian boreal biome, Ecosystems, 2013, Vol. 16, No 5, pp. 852–865.

Lal R., Lorenz K., Recarbonization of the Biosphere, Dordrecht: Springer, 2012, pp. 187–201.

Langenbruch C., Helfrich M., Flessa H., Effects of beech (Fagus sylvatica), ash (Fraxinus excelsior) and lime (Tilia spec.) on soil chemical properties in a mixed deciduous forest, Plant and Soil, 2012, Vol. 352, No 1, pp. 389–403.

Lauenroth W. K., Gill R., Turnover of root systems [in:] Root ecology, Berlin: Springer, 2003, рр. 61–89.

Lei P., Scherer-Lorenzen M., Bauhus J., The effect of tree species diversity on fine-root production in a young temperate forest, Oecologia, 2012, Vol. 169, No 4, pp. 1105–1115.

Leskinen P., Lindner M., Verkerk P. J., Nabuurs G. J., Van Brusselen J., Kulikova E., Hassegawa M., Lerink B., Russian forests and climate change. What Science Can Tell Us, 11, Finland, Joensuu: European Forest Institute, 2020, URL: https://doi.org/10.36333/wsctu11 (November 21, 2021).

Liang C., Schimel J. P., Jastrow J. D., The importance of anabolism in microbial control over soil carbon storage, Nature microbiology, 2017, Vol. 2, No 8, pp. 1–6.

Lovett G. M. Weathers K. C., Arthur M. A., Schultz J. C., Nitrogen cycling in a northern hardwood forest: do species matter? Biogeochemistry, 2004, Vol. 67, No 3, pp. 289–308.

Ludwig M. Achtenhagen J., Miltner A., Eckhardt K. U., Leinweber P., Emmerling C., Thiele-Bruhn S., Microbial contribution to SOM quantity and quality in density fractions of temperate arable soils, Soil Biology and Biochemistry, 2015, Vol. 81, pp. 311–322.

Lukina N. V., Ershov V. V., Gorbacheva T. T., Orlova M. A., Isaeva L. G., Tebenkova D. N., Assessment of soil water composition in the Northern taiga coniferous forests of background territories in the industrially developed region, Eurasian Soil Science, 2018, Vol. 51, No 3, pp. 277–289.

Lukina N. V., Tikhonova E. V., Orlova M. A., Bakhmet O. N., Kryshen A. M., Tebenkova D. N., Kuznetsova A. I., Smirnov V. E., Braslavskaya T. Y., Gornov A. V., Shashkov M. P., Isaeva L. G., Zukert N. V., Associations between forest vegetation and the fertility of soil organic horizons in northwestern Russia, Forest ecosystems, 2019, Vol. 6, No 1, Article 34.

Lukina N., Kuznetsova A., Tikhonova E., Smirnov V., Danilova M., Gornov A., Bakhmet O., Kryshen A., Tebenkova D., Shashkov M., Knyazeva S., Linking Forest Vegetation and Soil Carbon Stock in Northwestern Russia, Forests, 2020, Vol. 11, No 9, Article 979.

Lützow Mv., Kogel-Knabner I., Ekschmitt K., Matzner E., Guggenberger G., Marschner B., Flessa H., Stabilization of Organic Matter in Temperate Soils: Mechanisms and Their Relevance under Different Soil Conditions — a Review, Eurasian Journal of Soil Science, 2006, Vol. 57, No 4, pp. 426–445.

Marschner B., Brodowski S., Dreves A., Gleixner G., Gude A., Grootes P. M., … & Wiesenberg G. L., How relevant is recalcitrance for the stabilization of organic matter in soils? Journal of plant nutrition and soil science, 2008, Vol. 171, No 1, pp. 91–110.

Mayer M., Prescott C. E., Abaker W. E., Augusto L., Cécillon L., Ferreira G. W., Vesterdal L., Tamm Review: Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis, Forest Ecology and Management, 2020, Vol. 466, pp. 118–127.

Meentemeyer V., Macroclimate and lignin control of litter decomposition rates, Ecology, 1978, Vol. 59, No 3, pp. 465–472.

Melillo J. M., Aber J. D., Muratore J. F., Nitrogen and lignin control of hardwood leaf litter decomposition dynamics, Ecology, 1982, Vol. 63, No 3, pp. 621–626.

Mikutta R., Turner S., Schippers A., Gentsch N., Meyer-Stüve S., Condron L. M., Guggenberger G., Microbial and abiotic controls on mineral-associated organic matter in soil profiles along an ecosystem gradient, Scientific reports, 2019, Vol. 9, No 1, pp. 1–9.

Misir M., Misir N., Erkut S., Estimations of total ecosystem biomass and carbon storage for fir (Abies nordmanniana S. subsp. bornmülleriana (Mattf.)) forests (Western Black Sea Region), Kastamonu University Journal of Forestry Faculty, 2012, Vol. 12, No 3, pp. 60–64.

Neff J. C. Townsend A. R., Gleixner G., Lehman S. J., Turnbull J., Bowman W. D., Variable effects of nitrogen additions on the stability and turnover of soil carbon, Nature, 2002, Vol. 419, No 6910, pp. 915–917.

Neirynck J., Mirtcheva S., Sioen G., Lust N., Impact of Tilia platyphyllos Scop., Fraxinus excelsior L., Acer pseudoplatanus L., Quercus robur L. and Fagus sylvatica L. on earthworm biomass and physico-chemical properties of a loamy topsoil, Forest Ecology and Management, 2000, Vol. 133, No. 3, pp. 275–286.

Ni X., Yang W., Tan B., He J., Xu L., Li H., Wu F., Accelerated foliar litter humification in forest gaps: dual feedbacks of carbon sequestration during winter and the growing season in an alpine forest, Geoderma, 2015, Vol. 241, pp. 136–144.

Nierop K. G. J., Origin of aliphatic compounds in a forest soil, Organic geochemistry, 1998, Vol. 29, No 4, P. 1009–1016.

Nierop K. G. J., Preston C. M., Verstraten J. M., Linking the B ring hydroxylation pattern of condensed tannins to C, N and P mineralization. A case study using four tannins, Soil Biology and Biochemistry, 2006, Vol. 38, No 9, pp. 2794–2802.

Nikonov V. V., Zapasy i sostav podstilok vtorichnyh sosnjakov na severnom predele proizrastanija (Stocks and composition of litter of secondary pine forests at the northern limit of growth), Pochvovedenie, 1986, No 6, pp. 79–88.

Nohrstedt H. Ö., Soil water chemistry as affected by liming and im fertilization at two Swedish coniferous forest sites, Scandinavian Journal of Forest Research, 1992, Vol. 7, No 1–4, pp. 143–153.

Oostra S., Majdi H., Olsson M., Impact of tree species on soil carbon stocks and soil acidity in southern Sweden, Scandinavian Journal of Forest Research, 2006, Vol. 21, No 5, pp. 364–371.

Orlova M. A. Lukina N. V., Smirnov V. Je., Artemkina N. A., Vlijanie eli na kislotnost’ i soderzhanie jelementov pitanija v pochvah severotaezhnyh el’nikov kustarnichkovo-zelenomoshnyh (Effect of spruce on acidity and nutrient content in the soils of northern taiga dwarf-green moss spruce forests), Pochvovedenie, 2016, No 11, pp. 1355–1367.

Patoine G., Thakur M. P., Friese J., Nock C., Hönig L., Haase J., Scherer-Lorenzen M., Eisenhauer N., Plant litter functional diversity effects on litter mass loss depend on the macro-detritivore community, Pedobiologia, 2017, Vol. 65, pp. 29–42.

Paul K. I., Polglase P. J., Nyakuengama J. G., Khanna P. K., Change in soil carbon following afforestation, Forest ecology and management, 2002, Vol, 168, No 1–3, pp. 241–257.

Penne C., Ahrends B., Deurer M., Böttcher J., The impact of the canopy structure on the spatial variability in forest floor carbon stocks, Geoderma, 2010, Vol. 158, No 3–4, pp. 282–297.

Pérez-Harguindeguy N., Díaz S., Cornelissen J. H., Vendramini F., Cabido M., Castellanos A., Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina, Plant and soil, 2000, Vol. 218, No 1, pp. 21–30.

Podvezennaja M. A., Ryzhova I. M., Zavisimost’ variabel’nosti zapasov ugleroda v pochve ot prostranstvennoj struktury rastitel’nogo pokrova lesnyh biogeocenozov (Dependence of the variability of carbon stocks in soil on the spatial structure of the vegetation cover of forest biogeocenoses), Vestnik Moskovskogo universiteta, Serija 17, Pochvovedenie, 2010, No 4, pp. 3–9.

Polyakova O., Billor N., Impact of deciduous tree species on litterfall quality, decomposition rates and nutrient circulation in pine stands, Forest Ecology and Management, 2007, Vol. 253, No 1–3, pp. 11–18.

Ponti F., Minotta G., Cantoni L., Bagnaresi U., Fine root dynamics of pedunculate oak and narrow-leaved ash in a mixed-hardwood plantation in clay soils, Plant and Soil, 2004, Vol. 259, No 1, pp. 39–49.

Post W. M., Emanuel W. R., Zinke P. J., Stangenberger A. G., Soil carbon pools and world life zones, Nature, 1982, Vol. 298, No 5870, pp. 156–159.

Prescott C. E., Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry, 2010, Vol. 101, No 1, pp. 133–149.

Prescott C. E., Zabek L. M., Staley C. L., Kabzems R., Decomposition of broadleaf and needle litter in forests of British Columbia: influences of litter type, forest type, and litter mixtures, Canadian Journal of Forest Research, 2000, Vol. 30, pp. 1742–1750.

Priputina I. V., Frolova G. G., Shanin V. N., Mjakshina T. N., Grabarnik P. Ja., Raspredelenie organicheskogo veshhestva i azota v dernovo-podburah Prioksko-Terrasnogo zapovednika i ego svjaz’ so strukturoj lesnyh fitocenozov (Distribution of organic matter and nitrogen in the soddy-podburs of the Prioksko-Terrasny reserve and its relationship with the structure of forest phytocenoses), Pochvovedenie, 2020, No 8, pp. 921–933.

Puhe J., Growth and development of the root system of Norway spruce (Picea abies) in forest stands — a review, Forest ecology and management, 2003, Vol. 175, No 1–3, pp. 253–273.

Quenea K., Derenne S., Largeau C., Rumpel C., Mariotti A., Variation in lipid relative abundance and composition among different particle size fractions of a forest soil, Organic Geochemistry, 2004, Vol. 35, No 11–12, pp. 1355–1370.

Rasporjazhenie Ministerstva prirodnyh resursov i jekologii RF ot 30 ijunja 2017 g. № 20-r “O metodicheskih ukazanijah po kolichestvennomu opredeleniju ob#ema pogloshhenija parnikovyh gazov” (Order of the Ministry of Natural Resources and Environment of the Russian Federation of June 30, 2017 No 20-r “On methodological guidelines for the quantitative determination of the volume of absorption of greenhouse gases”), URL: https://www.garant.ru/ products/ipo/prime/doc/71612096/ ( July 07, 2021).

Rasse D. P., Rumpel C., Dignac M. F., Is soil carbon mostly root carbon? Mechanisms for a specific stabilization, Plant and soil, 2005, Vol. 269, No 1, pp. 341–356.

Red’ko G. I., Lindulovskaja listvennichnaja roshha: uchebnoe posobie (Lindulovskaya larch grove: study guide), Leningrad: LTA, 1984, 96 p.

Reich P. B., Oleksyn J., Modrzynski J., Mrozinski P., Hobbie S. E., Eissenstat D. M., … & Tjoelker M. G., Linking litter calcium, earthworms and soil properties: a common garden test with 14 tree species, Ecology letters, 2005, Vol. 8, No 8, pp. 811–818.

Rossel R. A., Webster R., Bui E. N., Baldock J. A., Baseline map of organic carbon in Australian soil to support national carbon accounting and monitoring under climate change, Global Change Biology, 2014, Vol. 20, No 9, pp. 2953–2970.

Sariyildiz T., Anderson J. M., Variation in the chemical composition of green leaves and leaf litters from three deciduous tree species growing on different soil types, Forest Ecology and Management, 2005, Vol. 210, No 1–3, pp. 303–319.

Schulp C. J. E., Nabuurs G. J., Verburg P. H., de Waal R. W., Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories, Forest ecology and management, 2008, Vol. 256, No 3, pp. 482–490.

Semenov V. M., Ivannikova L. A., Tulina A. S., Stabilizacija organicheskogo veshhestva v pochve (Stabilization of organic matter in soil), Agrohimija, 2009, No 10, pp. 77–96.

Semenov V. M., Kogut B. M., Stepanov A. L., Mamontov A. G., Pochvennoe organicheskoe veshhestvo (Soil organic matter), Мoscow: GЕОS, 2015, 233 p.

Shablij I. V., Formirovanie dubovo-sosnovyh nasazhdenij v uslovijah svezhih sudubrav Juzhnoj chasti Poles’ja i Severnoj lesostepi, Avtoref. diss. kand. biol. nauk (Formation of oak-pine plantations in fresh soil conditions in the southern part of Polesie and Northern forest-steppe, Abstract of candidate’s thesis) Kiev, 1990, 25 p.

Shanin V., Komarov A., Mäkipää R., Tree species composition affects productivity and carbon dynamics of different site types in boreal forests, European Journal of Forest Research, 2014, Vol. 133, pp. 273–286.

Shhepashhenko D. G., Muhortova L. V., Shvidenko A. Z., Vedrova Je. F., Zapasy organicheskogo ugleroda v pochvah Rossii (Organic carbon stocks in soils of Russia), Pochvovedenie, 2013, No 2, pp. 123–123.

Silver W. L., Miya R. K., Global patterns in root decomposition: comparisons of climate and litter quality effects, Oecologia, 2001, Vol. 129, No 3, pp. 407–419.

Simon J., Dörken V. M., L.-M.-Arnold A., Adamczyk B., Environmental conditions and species identity drive metabolite levels in green leaves and leaf litter of 14 temperate woody species, Forests, 2018, Vol. 9, No 12, Article 775.

Six J. Bossuyt H., Degryze S., Denef K., A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics, Soil and tillage research, 2004, Vol. 79, No 1, pp. 7–31.

Six J., Conant R. T., Paul E. A., Paustian K., Stabilization mechanisms of soil organic matter: implications for C-saturation of soils, Plant and soil, 2002, Vol. 241, No 2, pp. 155–176.

Smolander A., Kitunen V., Soil microbial activities and characteristics of dissolved organic C and N in relation to tree species, Soil Biology and Biochemistry, 2002, Vol. 34, No 5, pp. 651–660.

Soares M., Rousk J., Microbial growth and carbon use efficiency in soil: links to fungal-bacterial dominance, SOC-quality and stoichiometry, Soil Biology and Biochemistry, 2019, Vol. 131, pp. 195–205.

Sokol N. W., Bradford M. A., Microbial formation of stable soil carbon is more efficient from belowground than aboveground input, Nature Geoscience, 2019, Vol. 12, No 1, pp. 46–53.

Spielvogel S., Prietzel J., Leide J., Riedel M., Zemke J., Kögel-Knabner I., Distribution of cutin and suberin biomarkers under forest trees with different root systems, Plant and soil, 2014, Vol. 381, No 1, pp. 95–110.

State of Finland’s Forests 2012. Criterion 1. Forest resources. Carbon stock on forest land (1.4). URL: http://www.metla.fi/metinfo/sustainability/c1-carbon-stock.htm (July 7, 2021)

Stendahl J., Johansson M. B., Eriksson E., Nilsson Å., Langvall O., Soil organic carbon in Swedish spruce and pine forests — differences in stock levels and regional patterns, Silva Fennica, 2010, Vol. 44, No 1, pp. 5–21.

Striganova B. R., Pitanie pochvennyh saprofagov, (Nourishment of soil saprophages), Moscow: Nauka, 1980, Chapter 1, pp. 8–15.

Swanston C. Homann P. S., Caldwell B. A., Myrold D. D., Ganio L., Sollins P., Long-term effects of elevated nitrogen on forest soil organic matter stability, Biogeochemistry, 2004, Vol. 70, No 2, pp. 229–252.

Swift M. J., Heal O. W., Anderson J. M., Anderson J. M., Decomposition in terrestrial ecosystems, Vol. 5, Berkeley: Univ. of California Press, 1979, 372 р.

Thevenot M., Dignac M. F., Rumpel C., Fate of lignins in soils: a review, Soil Biology and Biochemistry, 2010, Vol. 42, No 8, pp. 1200–1211.

Totsche K. U., Amelung W., Gerzabek M. H., Guggenberger G., Klumpp E., Knief C., Lehndorff E., Mikutta R., Peth S., Prechtel A., Ray N., Kogel-Knabner I., Microaggregates in soils, Journal of Plant Nutrition and Soil Science, 2018, Vol. 181, No 1, pp. 1–33.

Utkin A. I. Biologicheskaja produktivnost’ lesov (metody izuchenija i rezul’taty), (Biological productivity of forests (research methods and results)), Lesovedenie i lesovodstvo, Vol. 1, 1975, pp. 9–190.

Vesterdal L., Clarke N., Sigurdsson B. D., Gundersen P., Do tree species influence soil carbon stocks in temperate and boreal forests? Forest Ecology and Management, 2013, Vol. 309, P. 4–18.

Vesterdal L., Schmidt I. K., Callesen I., Nilsson L. O., Gundersen P., Carbon and nitrogen in forest floor and mineral soil under six common European tree species, Forest. Ecol. Manag, 2008, Vol. 255, No 1, pp. 35–48.

Wardle D. A., Nilsson M. C., Zackrisson O., Gallet C., Determinants of litter mixing effects in a Swedish boreal forest, Soil Biology and Biochemistry, 2003, Vol. 35, pp. 827–835.

Wiesmeier M., Urbanski L., Hobley E., Lang B., von Luetzow M., Marin-Spiotta E., van Wesemael B., Rabot E., Ließ M., Garcia-Franco N., Wollschläger U., VogelfIngrid H.-J., Kögel-Knabner I., Soil organic carbon storage as a key function of soils — a review of drivers and indicators at various scales, Geoderma, 2019, Vol. 333, pp. 149–162.

Wolters V., Invertebrate control of soil organic matter stability, Biology and fertility of Soils, 2000, Vol. 31, No 1, pp. 1–19.

Xiao C., Bolton R., Pan W. L., Lignin from rice straw Kraft pulping: Effects on soil aggregation and chemical properties, Bioresource technology, 2007, Vol. 98, No 7, pp. 1482–1488.

Zhang D. Hui D., Luo Y., Zhou G., Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors, Journal of Plant Ecology, 2008, Vol. 1, No 2, pp. 85–93.

Zheng L. T., Chen H. Y. H., Yan E. R., Tree species diversity promotes litterfall productivity through crown complementarity in subtropical forests, Journal of Ecology, 2019, Vol. 107, No 4, pp. 1852–1861.

Zhou W. J. Sha L. Q., Schaefer D. A., Zhang Y. P., Song Q. H., Tan Z. H., … & Guan H. L., Direct effects of litter decomposition on soil dissolved organic carbon and nitrogen in a tropical rainforest, Soil Biology and Biochemistry, 2015, Vol. 81, pp. 255–258.

Zonn S. V., Gorno-lesnye pochvy severo-zapadnogo Kavkaza (Mountain forest soils of the northwestern Caucasus), Leningrad: Izd-vo AN SSSR, 1950, pp. 55–145.