
Original Russian Text © 2018 E.N. Sochilova, N.V. Surkov, D.V. Ershov, V.A. Khamedov, 

published in Forest Science Issues Vol. 1, No. 1, pp. 1-23 

DOI 10.31509/2658-607x-2019-2-2-1-20

ASSESSMENT OF BIOMASS OF FOREST SPECIES USING SATELLITE IMAGES OF HIGH 

SPATIAL RESOLUTION (ON THE EXAMPLE OF THE FOREST OF KHANTY-MANSI 

AUTONOMOUS OKRUG) 

E.N. Sochilova1, N.V. Surkov1, 2, D.V. Ershov1, V.A. Khamedov3 

1Center for Forest Ecology and Productivity of the RAS 

Profsoyuznaya st. 84/32 bldg. 14, Moscow, 117997, Russia 

2 Lomonosov Moscow State University, Moscow, 119991, Russia 

3 Yugra State University, Khanty-Mansiysk, 628012, Russia 

E-mail: elena@ifi.rssi.ru

Received 30 October 2018 

The paper describes assessment of spatial biomass of top wood layer based on combination of 

high-resolution Landsat-8 satellite images and selected ground forest inventory data measurements. Test 

area is one of forestry of Khanty-Mansiysk region. Segmentation of satellite images for spectral 

homogeneous land sites (segments) mapping is applied. Land category, dominated specie, age and wood 

stock volume for these sites are defined. Ground forest inventory data and segments used for selection of 

segments for dominated specie classification and validation of obtained map. The first, nine types of land 

cover are classified, four of them belong to forest cover with dominating of pine, spruce, cider and birch. 

The reference sample is updated by segments of such non-forest classes as fires, cuts and other 

non-forested lands, swamps, water internal bodies. Twelve spectral metrics are used for classification: 

reflectance in blue, green, red and near-infrared bands of Landsat-8. There are following vegetation 

seasons: and of winter, beginning of spring and middle of summer. The most significant informative 

metrics are the reflectance in the NIR band of the spring image, also green and red bands of the summer 

image. Random Forest algorithm is applied for training classification. The total accuracy of land 

categories and dominated species classification is 86,3%. Cross-validation of the classification based on 

the control sample was 0.712. In the second stage, we used regression models to relate the reflectance in 

the red band of the winter image with the taxation characteristics of the wood stock and age of the forest 

species in the selected reference segments. The level of relationship between the reflectance and wood 

stock values were equal to 0.80 for pine, 0.56 for dark coniferous species and 0.73 for birch. Between the 

reflectance and the specie height is following 0.75 for pine, 0.61 for birch and 0.64 for dark coniferous 

species. A check with control data showed that the error in estimating the wood stock above 250 m3 / ha 

for birch is 15.4%, for pine - 19.0% and for dark coniferous species - 5.5%. We used regional growth 

tables and the mean heights reconstructed from the regression equations for calculation mean specie ages. 

Then the age groups (according regional felling age) for each species are determined and the wood stocks 

are converted into wood biomass by conversion coefficients. As a result, maps of mean ages, heights, 

wood stock in m3/ha and biomass in t/ha were created. Based on these maps quarter assessments of the 

areas and stocks of the main dominated forest species of our test area, including felling age forest stands, 

were carried out. 

______________________________________________________________________________________________Forest Science Issues, Vol. 2 (2), 2019

E.N. Sochilova, N.V. Surkov, D.V. Ershov, V.A. Khamedov 1/19



Key words: stand biomass, wood stock volume, remote sensing data, Landsat-8, forest 

classification, Random Forest, forestry 

 

Combining multi-season and multi-temporal images with forest inventory data allows updating 

the spatial information on the distribution of the main land categories and predominant tree species in the 

study area, as well as identification the recent changes associated with fires, loggings and other impacts 

on forests. This paper presents the methods and results of the spatial assessment of the top layer wood 

biomass using Landsat 8 satellite multi-season images of high spatial resolution and selected forest 

inventory data. A plot for research was selected on the territory of Sovetskoye forestry of 

Khanty-Mansiysk Autonomous Okrug. 

Traditionally, it is believed that there are correlations between reflectance characteristics in 

different spectral ranges and some properties of the vegetation cover (Vinogradov, 1984; Poso et al., 

1987), in particular the forest inventory characteristics of trees. Among the revealed regularities a link 

between the reflectance in the red spectral range and the stocks of stem wood in the study area was 

mentioned (Kuusela, Poso, 1970). In this paper it is also proposed to use the above-named pattern for the 

assessment of wood stocks and it is showed that the best results are achieved in winter, in the absence of 

tree leaves. Such studies were developed on a broad scale when mass inflow of similar data from Landsat 

satellites began in 1972 in the United States and Northern Europe. These data have been widely used to 

obtain tree stand characteristics such as height, projective forest cover and leaf area index (LAI) (Hall et 

al., 2003; Zhang et al., 2014). Many studies have focused on gaining information on green biomass 

volume and vegetation productivity (Hame et al., 1997; Hall et al., 2006; Ji et.al., 2012; Zhang et al., 

2014). Use of optical remote sensing data for the quantification of forest fuel stocks (Arroyo et al., 2008; 

Gharun et al., 2017) or the volume of stem wood for logging purposes (Fazakas et al., 1999; Zheng et al. 

2014) is of greater interest. Such use of this type of data is, however, much less common. Information on 

stands obtained from ground-based studies can be used both to construct models for remote assessment 

of wood stocks (Tokola, 2000; Hall et al., 2006; Chirici et al., 2008; Mura et al., 2018) and to verify the 

accuracy of the results (Tokola, Heikkilä, 1997; Halme, Tomppo, 2001). In Russia, more attention is paid 

to the use of remote sensing optical range data for the classification of forest species composition, but 

there are also papers on the assessment of wood stocks, for example in the southern part of the Valdai 

Hills (Kozlov et al., 2007) where a digital elevation model was used together with Landsat 5 and Landsat 

7 data, as well as in Krasnoyarsk Krai on the basis of Landsat 7 data (Sochilova, Ershov, 2012) and in 

Primorsky Krai on the basis of the medium spatial resolution data of  PROBA-V satellite (Zharko et al., 

2018). 
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STUDY OBJECT AND INPUT DATA 

The study area of 2.300 km2 is located within Sovetsky district of Khanty-Mansiysk Autonomous 

Okrug, to the east of Agirish settlement, to the north of the regional center, Sovetsky town, and to the 

south-east of "Malaya Sosva" nature reserve. The research area includes parts of three local forestry areas 

– Torskoye, Esskoye and Zelenoborskoye, which are subunits of the Sovetskoye forestry. In physical and 

geographical terms, the territory is located within the West Siberian Plain, on the southern spurs of the 

North Sosva Upland with absolute heights up to 233 m at the raising of Malososvinsky amphitheatre. 

Through these spurs passes the watershed between the basins of the Severnaya Sosva (flows into the Ob) 

and Konda (flows into the Irtysh) rivers. The lowest level of the water line is at an absolute height of 72 m. 

The relief of the western part of the territory is an elevated wavy morainic plain, with deeply embedded 

valleys of the Ess river tributaries. The eastern part is a flat fluvioglacial plain, with a much lower degree 

of dissection (Gvozdetsky, Mikhailov, 1978). 

 The climate of the studied area is continental, rather humid; in summer it is largely determined by 

the western cyclonic transport of Atlantic air masses, in winter – by the Asian continental anticyclone. 

The average temperatures in January are around minus 18 °C, in July – plus 17.5 °C. The frost-free period 

lasts for 90 days. Annual precipitation is up to 500 mm but due to the flat terrain and poor drainage the 

area is swampy (Geographical conditions..., 2018).  

The study area belongs to the Severnaya-Sosva landscape province of the northern taiga 

forest-swampy zone of the West Siberian Plain. Forests cover 76% of the territory of the Sovetskoye 

forestry (Forest management regulations..., 2018). The most typical are pine green moss and shrub 

forests with an admixture of larch. They often have a small (8-12 m) height and a broken canopy, may 

turn into waterlogged open woodlands. The share of pine forests in the Sovetskoye forestry is 74%, 

where active logging takes place. Spruce-cedar plantations occupying less than 10% of the area are 

present on the drained slopes of river valleys. Flat parts of the interstream areas have a significant share 

of birch forests with admixed aspen and pine, often also waterlogged. In addition to forests, large areas 

are occupied by raised sphagnum bogs (Atlas of forests..., 1973, Gvozdetsky, Mikhailov, 1978). 

Input materials are cloud-free Landsat 8/OLI scenes with a spatial resolution of 30 m obtained at 

different seasons: late winter (23.02.2014), beginning of spring vegetation (19.05.2016) and 

mid-summer (20.06.2016) (Fig. 1). We used reflectance data in blue, green, red and near infrared bands. 

Satellite data values are unified by converting the data into dimensionless absolute values of reflectance 

in the range from 0 to 1 showing the ratio between the amount of the stream of sun falling onto the object 

and the amount of reflected light (Markham, Barker, 1986; Belova, Ershov, 2012). The paper specially 

focuses on the investigation of winter reflectance in the red band to assess the stand volume through the 
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intensity of sun beams reflected from the snow between tree crowns. 

We used also selected ground-based inventory data with the information on species composition, 

heights, age and stocks of stem wood for each forest stand area. 

 

Figure 1. Spring (a), summer (b), winter (c) Landsat-8 satellite images of the test area 

 

RESEARCH METHODS 

Estimation of biomass stocks of forest species using satellite images of high spatial resolution 

includes following several steps: 

 segmentation of combined multiband data for the summer season into 

spectrally-homogeneous areas of the earth surface; 

 segment selection using inventory data to train the classifier and to assess the accuracy of 

classification results; 

 classification of the land cover, analysis of performance of spectral metrics and evaluation of 

the accuracy of the obtained map; 

 construction of regression relationships between reflectance values in the winter red band 

with forest-inventory characteristics (stock of stem wood and height) on selected reference 

segments; 

 mapping of stem wood stocks, assessment of stock estimation accuracy; 

  mapping of average heights of the stands, assessment of height determination accuracy; 

 calculation of average age of stands using tables of forest allometric equations  , 
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determination of age groups for each species; 

 conversion of wood stocks into biomass  using conversion coefficients of equations.  

As a result we created maps of average ages, heights, wood stock (m3/ha) and biomass 

(t/ha) of forest stands. 

The procedure of supervised classification requires a prepared training datasets. In this case, 

spectrally-homogeneous segments are considered as training plots. We used Full Lambda Schedule 

(FLS) segmentation technique (Redding et al., 1999) for the assessment of land categories, predominant 

species, age and growing stock. Dominated forest specie stand plots derived from the forest inventory 

data with the following parameter– at least seven units in the top layer of the stand. Overlapping of 

segments and taxation plots makes it possible to create reference plots with the area of more than 1 

hectare with one predominant species. In addition, to eliminate accidental artifacts or grave mistakes, 

visual expert analysis is carried out, using information about the typical conditions of certain tree species 

growth, as well as possible anthropogenic impacts. The reference sample of forest species is 

supplemented by segment plots of non-forest classes: burnt areas, clear cut areas, other non-forested 

areas, swamps, and water bodies.  

To reach our goal, the following steps were defined: (1) classification of the land cover using all 

spectral metrics without exception; (2) analysis of informational value of spectral metrics and looking for 

their optimal number for classification; (3) evaluation of the accuracy of the results using an validation 

sample plots (error matrix).  

Classification and analysis of performance of spectral reflectance characteristics for the 

classification of dominated forest species is performed using the Random Forest statistical method 

(Breiman, 2001). The method is based on constructing a large number of decision trees from the initial 

training sample. This algorithm also includes the optimal number of metrics, with which a tree divides 

classes most clearly, trying to ensure that each tree leaf contains observations of only one class. The 

resulting classification variants with different numbers of metrics are compared by the kappa coefficient 

(Tyurin, Makarov, 1998). The higher the value is, the more consistent the separation is. In the course of 

solving this task, the best consistency was achieved using seven metrics. For internal verification 

purposes, the entire Random Forest algorithm was executed several times, in our case – five times. The 

final classification version is based on a simple vote of the classifiers defined by individual trees 

(Chistyakov, 2013). 

The Random Forest technique makes it possible to evaluate performance of the metrics using the 

"importance measure" of the metric for classification proposed by Breiman (Breiman, 2001). For each 

metric, a random forest is constructed and the probability of an OOB (Out-Of-Bag) misclassification is 
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estimated. Then, in OOB samples, a random permutation of the metric values is performed and the 

probability of an erroneous classification with the modified OOB samples is estimated. The performance 

is estimated by averaging the difference of error probability values for all trees before and after mixing 

these values. Error values are standard deviation-normalized (Chistyakov, 2013). This parameter is 

conventionally called the "mean decrease in accuracy" (MDA). The more pixels start to leave the class 

defined at the beginning and mix with others, the greater MDA value will result from random mixing of 

the sample, which means that the metric whose values are mixed is more informative (Guyon, Elisseeff, 

2003).  

Using Random Forest, it is possible to assess the classification accuracy by comparing it with a 

set of control pixels randomly pre-selected from the original sample of reference pixels. The initial 

sample is divided into two equal subsets: the first is used to train the model, the second – to check the 

classification accuracy. The result of this analysis is a class confusion matrix showing the overall 

accuracy of classification. 

For the analysis of performance of the metrics the classification is carried out several times with 

the consequent exclusion of individual spectral metrics with the lowest MDA. Each time, a confusion 

matrix is constructed and the number of correctly recognized pixels and the classification error of the first 

and second kind are estimated. Basing on the obtained errors, a diagram of classification accuracy versus 

the number of used metrics is constructed. This allows using the maximum value of correctly recognized 

pixels to determine the optimal number of informative metrics for species recognition in the study region.    

As a result of the classification, a map of the land cover of the study area is created. 

The next step is the construction of regression relationships between brightness values in the 

winter red band, with forest inventory characteristics (stock of stem wood and tree height) of the selected 

reference segments, to estimate the stock of wood and average age of forests (Sochilova, Ershov, 2012). 

The process of stocks and heights reconstruction begins with preparing of training and validation datasets, 

i.e. plots of stand with the dominated species and a different stock of stem wood. We used the same 

datasets as in the case of the land cover types classification, divided in half on training and validation 

subsets. If too small data are obtained, visual image analysis is used to select additional standards of a 

species. Then, average reflectance values for the training dataset are extracted from a Landsat 8 image 

scene. Equations of correlation between reflectance values of each species and forest inventory 

characteristics within homogeneous stand areas are then reconstructed. The estimation of the wood stock 

of dark coniferous species may be difficult because of the small number of pure reference stands of 

young trees with low stocks. A possible solution to this problem may be selection of additional support 

areas of deciduous stands with dark coniferous species in the second layer. 
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The age of stand is determined by height using regional tables of forest allometric equations and 

tables of stand productivity. These tables of modal stand were analyzed (Shvidenko et al., 2008; 

Nagimov, 2011; Sekerin, 2015; Onuchin, 2017). Tabular data and equations of correlation are compared 

with the actual data on the height and age of the stands of the study area. The equations that are closest to 

the actual ones are selected and used to further determination of the stands age. The age determined in 

this way allows proceeding to the age groups of forest stands. Wood biomass values for each age group of 

individual species are calculated using the stocks of stem wood and conversion coefficients 

(Zamolodchikov et al., 2003). Thematic raster maps of the stem wood stocks and biomass, heights and 

age are constructed.  

RESULTS AND DISCUSSION 

Classification of land cover. Based on the analysis of forest inventory materials, four 

predominant forest species forming stands of sufficient purity and area were identified: Scotch pine, 

spruce, Siberian pine (cedar) and birch. Stands of maple, linden and aspen presented in the test area 

forests less than seven units in a stand. So it was not possible to form a sample of training datasets for 

them. The summer Landsat 8 image (bands 2-5) was divided into homogeneous spectral segments. 

Overlapping between the segments and selected taxation stand areas made it possible to form reference 

plots for training the classifier and result monitoring. The reference sample of forest species was 

supplemented with segments for non-forest classes: burnt areas, clear cut areas, non-forested lands, 

swamps, and water bodies. As a result, the reference sample for training and validation of classification 

accuracy consisted of 1,811 segments for four classes of forest species and 252 segments for five 

non-forest classes.  

At the first stage, the territory is classified into 9 types of land cover, four covered with forest 

classes with dominant species: pine, cedar, spruce, and birch. 12 spectral metrics are used for 

classification: reflectance in the blue (#2), green (#3), red (#4) and near infrared (#5) bands of the OLI 

Landsat 8 system for winter, spring and summer. Random Forest algorithm carried out the land cover 

classification based on the reference sample using all 12 metrics (Fig. 2).  

Overall accuracy of forest species classification was 86.3%, error of the first kind 

(underestimation) – 15.1% and of the second kind (overestimation) – 12.2% (Table 1). 

The largest underestimation or skipping validation pixels was seen in spruce (41%, mainly due to  

its confusion with cedar stands), the most significant overestimation or false classification was also 

observed in spruce (35%). For cedar, these values are 34 and 28%, for pine – 30 and 18%, and for birch – 

8 and 7%, respectively. 

Using the Breiman's importance measure, the performance value of each metric was determined 
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by the mean decrease in accuracy (MDA) before and after random mixing of the values of each metric in 

the modified sample, which makes it possible to rank the metrics by their importance. Figure 3 shows that 

the highest MDA with sample mixing is found for reflectance in the NIR band of the spring image, 

followed by the green and red bands of the summer image. The least informational value is shown by the 

green band in winter and spring. The evaluation of metric perfomance value was carried out based on 

these data, by their successive exclusion from the classification and comparison of the results with the 

validation sample. Initially, all 12 metrics were used for classification. The cross-validation of 

classification results using the validation sample gave the value of 0.712 (Fig. 4). Then, the winter green 

band was excluded from the analysis, which reduced the cross-validation accuracy to 0.614. Further 

successive exclusion of the green and blue bands (spring) and the blue band (winter) did not change the 

dynamics of the classification accuracy change, reducing its accuracy to 0.56 with eight metrics. Thus, all 

twelve spectral metrics are informative for the classification of the land cover of the study area. 

 

 

Figure 2. The land cover map of the test site 
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Table 1. Error matrix of land cover class recognition 

  Pine Spruce Cedar Birch Swamps Water 
Clear cut 

areas 
Non-fores
ted lands  

Burnt 
areas 

Total 

number of 
pixels 

Number 

of 

false-class
ified 

pixels 

False 
classifica- 

tion pro- 
bability 

Mean 

Pine 744 69 66 8 5 0 9 1 1 903 159 0.176   

Spruce 101 340 57 26 2 0 0 0 0 526 186 0.354   

Cedar 96 43 367 2 0 0 0 0 0 508 141 0.278   

Birch 8 21 1 501 2 2 3 0 0 538 37 0.069   

Swamps 5 3 0 0 522 1 1 0 0 532 10 0.019   

Water 0 1 0 1 2 498 0 0 0 502 4 0.008   

Clear cut 

areas 
19 2 1 4 0 0 464 5 23 518 54 0.104 

  

Non-forest

ed lands  
0 0 0 0 0 0 1 305 2 308 3 0.010 

  

Burnt 
areas 

0 0 0 0 0 0 38 2 467 507 40 0.079 
  

Total 

number of 

pixels 
973 479 492 542 533 501 516 313 493 4842     

  

Number of 

pixels 

skipped 
229 139 125 41 11 3 52 8 26   634   

  

Class 

skipping  

probability 
0.308 0.409 0.341 0.082 0.021 0.006 0.112 0.026 0.06       0.151 

Mean                       0.122   

 

 

Figure 3. Assessment of performance metrics for classification of land cover 
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Figure 4. Change of accuracy of classes recognition depending on number of the used metrics 

 

Determination of stem wood and biomass stocks . Test plots – segments in accordance with the 

inventory database for coniferous and deciduous stands – were selected in such a way as to reflect the 

largest range of the stocks of wood. In total, the sample included 350 plots of pine stands, 112 plots of 

birch and 77 plots of dark coniferous species. The latter include spruce and cedar. The area of the plots is 

from 1.8 to 9.5 hectares. Estimation of the stock of dark coniferous wood is difficult in terms of finding 

standards for young stands with low stocks. To solve this problem, additional support plots of birch 

stands with dark coniferous species in the second layer were selected, where the number of units of dark 

coniferous plants in the second layer was to be 7 or more. In the study area, the selection of 28 additional 

plots of this kind allowed us to increase the level of confidence of the reconstruction of dark coniferous 

species stocks from 0.56 to 0.63. For the training sample from the Landsat 8 winter scene, pixel 

spectral-reflectance brightness values are extracted and average value for each area is calculated. The 

obtained regression relationships between the reflectance values in the winter red band and forest 

inventory characteristics (stock and height) look like exponential curves (Fig. 5). The level of stocks 

correlation was 0.80 for pine, 0.56 for dark coniferous species and 0.73 for birch; heights correlation - 

0.75 for pine, 0.64 for dark coniferous species and 0.61 for birch. The validation sample was used to 
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assess the quality of the results. The error in determining the stocks of birch was 39.5% for small stocks 

(up to 50 m3/ha inclusive) and 15.4% for stocks exceeding 250 m3/ha, of pine – 50.4% (up to 50 m3/ha 

inclusive) and 15.5% (above 350 m3/ha), for dark coniferous species 22.2% (up to 150 m3/ha) and 2.7% 

(above 300 m3/ha), respectively (Fig. 6).  

 

 
Figure 5. Relationship between the reflectance in the red band of the winter image and wood stock 

values (m3/ha) – top pictures; Relationship between the reflectance in the red band of the winter image 

and forest stand height (m) – down ones; (a) - Evergreen dark-coniferous species, (b) – Pine; (c) – Birch 
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Figure 6. The error (percent) in estimating of the wood stock (top pictures) and heights (down ones) for 

forest species. 

(a) - Evergreen dark-coniferous species, (b) – Pine; (c) - Birch 

Using the coefficients of the regression equations, the reflectance values were converted into 

stem wood stocks and heights of pine, dark coniferous species and birch in accordance with the 

classification results. The result is a map of the average wood stock in m3/ha in each pixel (Fig. 7), and 

the heights of stands (Fig. 8). 

______________________________________________________________________________________________Forest Science Issues, Vol. 2 (2), 2019

E.N. Sochilova, N.V. Surkov, D.V. Ershov, V.A. Khamedov 12/19



 

Figure 7. Map of wood stock values, m3/ha 

 

Figure 8. Map of forest heights (m) 
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Before determining the biomass stock, stand age was determined. Biomass is calculated by stem 

wood stocks and conversion coefficients determined for each tree species, latitudinal zone and age group 

of plants (Zamolodchikov et al., 2003). Age groups for different species are different and are accepted 

according to forestry regulations of the forestry of interest (Table 2). Age is determined by growth curves. 

The actual data best corresponded to the dependencies given in the work of A. Z. Shvidenko et al. (2008): 

for pine of bonitet (site index) V in the northern taiga of West Siberia, birch of bonitet IV in the middle 

taiga of Siberia and Siberian pine of bonitet V in the taiga of the northern and middle Urals in 

hydromorphic conditions. The age of plants of the respective species is calculated for each image pixel 

that contains the height data, and a map of plant ages of the studied area is constructed based on these 

three equations (Fig. 9), so as to determine age groups afterwards (Fig. 10). Stocks of wood are 

reconverted in biomass using conversion coefficients and the map of biomass overall stocks is created 

(Fig. 11) within each plant age group.  

Table 2. Plant age groups according to the regulations of the Sovetskoye forestry (years) 

Species Young 

forests 

Middle-aged Maturing Mature Overmature 

Pine up to 40 40–80 80–100 100–120 above 120 

Spruce up to 40 40–80 80–100 100–140 above 140 

Cedar up to 80 80–120 120–160 160–200 above 200 

Birch up to 20 20–50 50–60 60–80 above 80 

Figure 9. Relationship between ages and heights for dark-coniferous species(a), pine (b); birch (c). 

It is numbered: 1 – values according to allometric tables of growth of trees and forest productivity 

(Shvidenko et.al., 2008), 2 - the restored values of specie ages 

______________________________________________________________________________________________Forest Science Issues, Vol. 2 (2), 2019

E.N. Sochilova, N.V. Surkov, D.V. Ershov, V.A. Khamedov 14/19



 

 

Figure 10. Maps of mean ages of forest stands, years 

Forest stand and quarters polygons, in which more than 50% of the area has tree logging age are shown in 

yellow colour borders and in red colour hatching, consequently 

 

Figure 11. Map of total forest wood biomass in t/ha 
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CONCLUSION 

The present paper has shown the possibility to estimate forest canopy biomass stocks, to 

determine heights and ages of stands on the basis of classification of Landsat 8 satellite multi-season 

images of high spatial resolution and selected forest inventory data. Our research resulted in creating 

thematic maps of average ages, heights, growing stocks in m3/ha and stocks of biomass in t/ha. On the 

basis of maps quarterly estimates of the areas and stocks of the main forest-forming species of the test 

area, including forest plots of the felling age, were carried out. The proposed estimates can be used as 

relevant information for forestry enterprises, as well as for estimation of the stocks of forest fuels in the 

upper canopy of the study area. 
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