• DOI 10.31509/2658-607x-202363-130
  • УДК 614.842; 630*96

METHODS AND OPEN SOURCE MACHINE LEARNING GIS TOOLS FOR FOREST TRANSPORT MODELING

 E. S. Podolskaia

Center for Forest Ecology and Productivity of the Russian Academy of Sciences

Profsoyuznaya st. 84/32 bldg. 14, Moscow, 117997, Russian Federation

 

E-mail: podols_kate@mail.ru

Received: 05.06.2023

Revised: 22.06.2023

Accepted: 23.06.2023

 

Paper describes machine learning (ML) methods and tools for transport modeling to access forest fires and forest resources by ground means for the regions in Russia. Forestry transport accessibility is a subject to be studied and improved. ML methods play an important role in change detection and automated data collection for the transport infrastructure. We have analyzed recent scientific publications of two systems, namely Russian electronic library “CyberLeninka” and European network for researchers ResearchGate. It should be noted that as of autumn 2023 the number of papers on the ML forestry transport modeling in these systems is small. Plugins from Open Source QGIS’s repository were studied. Some possible increase in the number of ML plugins from researchers and students could be expected, individual developers and small groups show their interest in the topic. ML prospects for ground transport modeling in the forestry have not yet been sufficiently studied.

Key words: machine learning, Open Source, GIS, forestry, transport modeling

 

REFERENCES

Behrooz H., Hayeri Y. M., Machine learning applications in surface transportation systems: a literature review, Applied Sciences, 2022, Vol. 12, Article ID: 9156.

Jaafari A., Pazhouhan I., Bettinger P., Machine learning modeling of forest road construction costs, Forests, 2021, Vol. 12, Article ID: 1169.

Kolesnikov A. A., Kikin P. M., Komissarova E. V., Kasyanova E. L., Use of machine learning technologies in decision of geoinformational tasks, Proceedings of the International conference “InterCarto. InterGIS”, 2018, Vol. 24 (2), pp. 371–384.

Mihajlov E. V., Saj S. V., Vydelenie lesa na kosmicheskih snimkah s pomoshh’ju metodov mashinnogo obuchenija (Forest identification on the satellite imagery using machine learning methods), Doklady TUSURa, 2017, Vol. 20, No 1, pp. 89–92, DOI: 10.21293/1818-0442-2017-20-1-89-92

Mihov O. M., Shatalova N. V., Borodina O. V., Vasil’ev Ju. I., Primenenie tehnologij mashinnogo obuchenija dlja Drone Network v logistike i portovoj dejatel’nosti Rossii (Application of machine learning technologies for Drone Network in logistics and port activities in Russia), Morskie intellektual’nye tehnologii, 2021, No 4, Vol. 1, pp. 149–157.

Narykova A. N., Plotnikova A. S., Podgotovka prediktorov dlja modelirovanija klimatoregulirujushhih jekosistemnyh uslug lesov na regional’nom urovne s pomoshh’ju Google Earth Engine (Preparation of predictors for modeling climate-regulating forest ecosystems services at regional level using Google Earth Engine), Nauchnye osnovy ustojchivogo upravlenija lesami: Materialy Vserossijskoj nauchnoj konferencii s mezhdunarodnym uchastiem, posvjashhennoj 30-letiju CEPF RAS. M.: CEPF RAS, 2022, pp. 182184.

Plotnikova A. S., Savin M. S., Lukina N. V., Teben’kova D. N., Kolycheva A. A., Chumachenko S. I., Shanin V. N., Kartografirovanie klimatoregulirujushhih jekosistemnyh uslug lesov na lokal’nom urovne (Mapping of forest climate-regulating ecosystem services at local level), Nauchnye osnovy ustojchivogo upravlenija lesami: Materialy Vserossijskoj nauchnoj konferencii s mezhdunarodnym uchastiem, posvjashhennoj 30-letiju CEPF RAS. M.: CEPF RAS, 2022, pp. 190192.

Podolskaia E. S., Obzor opyta reshenija zadach transportnogo modelirovanija v lesnom hozjajstve (Review of experience in solving transport modeling problems in the forestry), Voprosy lesnoj nauki, 2021, Vol. 4, No 4, pp. 1–32, DOI: 10.31509/2658-607x-2021-44-92.

Podolskaia E. S., Ispol’zovanie dannyh distancionnogo zondirovanija Zemli iz kosmosa dlja raspoznavanija izobrazhenija dorog v lesnom hozjajstve (Using Earth remote sensing data from space for road image recognition in the forestry), Voprosy lesnoj nauki, 2022, Vol. 5, No 4, pp. 1–21, DOI 10.31509/2658-607x-202252-115

Podolskaia E. S., Ershov D. V., Kovganko K. A., Infrastrukturnoe zonirovanie territorii dlja opredelenija svjazej s lesnymi pozharami (na primere Krasnojarskogo kraja, Rossija), (Infrastructure zoning of the territory for determination of links with forest fires (on the example of Krasnoyarsk Territory, Russia), Forests of Russia: politics, industry, science, education: Materials of the VIII All-Russian Scientific and Technical Conference, May 24–26, 2023, St. Petersburg, St. Petersburg State Forest Technical University named after S. M. Kirov, 2023, pp. 330–333.

Shyhaliev R. G., Issledovanie sovremennogo sostojanija primenenija mashinnogo obuchenija v neftegazovoj otrasli (A study of current state of machine learning application in the oil and gas industry), İnformasiya texnologiyaları problemləri, 2020, No 2, pp. 52–60. DOI: 10.25045/jpit.v11.i2.05

Snytkina D. A., Primenenie metodov mashinnogo obuchenija pri ocenke i kartografirovanii prirodnyh resursov (Application of machine learning methods to assess and mapping of natural resources): Magisterskaja VKR (spec. 05.04.03), Sankt-Peterburg: SPbGU, 2020, 92 p.

CP-04-Artificial intelligence tools and platforms for GIS, 2023, URL: https://kurl.ru/TtgVM (2023, 10 August).