• DOI: 10.31509/2658-607x-202471-140
  • УДК 631.48

ON BASIC ELEMENTARY SOIL-FORMING PROCESSES IN URBAN SOILS OF ROSTOV

N. V. Salnik, S. N. Gorbov, S. S. Tagiverdiev*, P. N. Skripnikov, О. S. Bezuglova

 

Southern Federal University, Russia, 344090, Rostov-on-Don, 194/1, Stachki Ave.

 

*E-mail: salnik@sfedu.ru

Received: 18.02.2024

Revised: 15.03.2024

Accepted: 25.03.2024

The paper presents the results of studying the profile distribution of macroelements in Calcic Chernozems park-recreational zones of Rostov agglomeration in the context of conjugated elementary soil-forming processes. Macroelement composition indicates that along with the previously described intensification of two leading elementary soil-forming processes, such as humus formation / humus accumulation and carbonate migration, during the change from herbaceous to woody plant formations there is also intensification of the associated elementary soil-forming process – oglinisation. This is identified by changes in the bulk chemical composition and redistribution of its main components in soil profiles under forest plantations.

Keywords: Rostov agglomeration, Calcic Chernozems, Haplic Chernozems, oglinisation, humus accumulation, macronutrient oxide, forest park soil

 

REFERENCES

Alehina N. D., Balnokin Ju. V., Gavrilenko V. F., Zhigalova T. V., Mejchik N. R., Nosov A. M., Polesskaja O. G., Haritonashvili E. V., Chub V. V., Fiziologija rastenij (Plant Physiology), Moscow: Izdatel’skij centr «Akademija», 2007, 640 p.

Bakhmatova K. A., Matynyan N. N., Sheshukova A. A., Anthropogenic Soils of Urban Parks: A Review, Eurasian Soil Sc, 2022, No 55, pp. 64–80, DOI: 10.1134/S1064229322010021.

Bezuglova O. S., Hyrhyrova M. M., Pochvy Rostovskoj oblasti (Soils of the Rostov Region), Rostov-na-Donu: Izd-vo JuFU, 2008, 352 p.

Colombini G., Auclerc A., Watteau F., Techno-moder: A proposal for a new morpho-functional humus form developing on Technosols revealed by micromorphology, Geoderma, 2020, Vol. 375, pp. 114526, DOI: 10.1016/j.geoderma.2020.114526.

Doran J. W., Parkin T. B., Defining and assessing soil quality, Defining Soil Quality for a Sustainable Environment. Special Publication, 1994, Vol. 35, pp. 3–21.

Fan K., Chu H., Eldridge D. J., Gaitan J. J., Liu Y. R., Sokoya B., Soil biodiversity supports the delivery of multiple ecosystem functions in urban greenspaces, Nat Ecol Evol., 2023, Vol. 7, No. 1, pp. 113–126. DOI: 10.1038/s41559-022-01935-4.

Gabbasova I. M., Afzalov R. Sh., Agrojekologicheskaja ocenka pochv parkov megapolisov (Agroecological assessment of soils of megapolis parks), Vestnik Orenburgskogo gosudarstvennogo universiteta, 2006, Vol. 10. No 2, pp. 362–367.

Gavriljuk F. Ja., Chernozemy Zapadnogo Predkavkaz’ja (Chernozems of the Western Precaucasus), Har’kov: Izd-vo Har’k. un-ta, 1955, 148 p.

Gorbov S. N., Genezis, klassifikacija i jekologicheskaja rol’ gorodskih pochv Evropejskoj chasti Juga Rossii (na primere Rostovskoj aglomeracii Diss. dokt. biol. nauk (Genesis, classification and ecological role of urban soils in the European part of the South of Russia (on the example of Rostov agglomeration)), Moskva: Mosk. s.-h. akad. im. K.A. Timirjazeva, 2018, 488 p.

Gorbov S. N., Bezuglova O. S., Specific features of organic matter in urban soils of Rostov-on-Don, Eurasian Soil Sc., 2014, Vol. 47, pp. 792–800, DOI: 10.1134/S1064229314080043

Gorbov S. N., Bezuglova O. S., Skripnikov P. N., Tishchenko S. A., Soluble Organic Matter in Soils of the Rostov Agglomeration, Eurasian Soil Sc., 2022, Vol. 55, No. 7, pp. 957–970, DOI: 10.1134/S1064229322070055

Gulbagca F., Burhan H., Elmusa F., Sen F., Calcium nutrition in fruit crops: Agronomic and physiological implications, Fruit Crops. Elsevier, 2020, pp. 173–190, DOI: 10.1016/B978-0-12-818732-6.00014-9.

IUSS Working Group WRB. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps, 4th International Union of Soil Sciences (IUSS), Vienna, Austria, 2022.

Klimanova O. A., Kolbovskij E. Ju., Illarionova O. A., Zeljonaja infrastruktura goroda: ocenka sostojanija i proektirovanie razvitija (Urban green infrastructure: assessing the state and designing development), Moscow: Tovarishhestvo nauchnyh izdanij KMK, 2020, 324 p.

Lebedeva M. Ju., Pochvy kak komponent sredy urbanizirovannyh territorij (Soils as a component of the environment of urbanised territories), Carskosel’skie chtenija, 2017, No 3, pp. 316–320.

Li R., Xu Q., Yu J., Che L., Peng Y., Multiscale assessment of the spatiotemporal coupling relationship between urbanization and ecosystem service value along an urban–rural gradient: A case study of the Yangtze River Delta urban agglomeration, China, Ecological Indicators, 2024, Vol. 160, pp. 111864, DOI: 10.1016/j.ecolind.2024.111864.

M 049-P/04, (Methodology for measuring the mass fraction of metals and metal oxides in powdered soil samples by X-ray fluorescence analysis), Sankt-Peterburg, 2004.

Mell I. C., Can green infrastructure promote urban sustainability?, Proceedings of the Institution of Civil Engineers-Engineering Sustainability. Thomas Telford Ltd, 2009, Vol. 162, No. 1, pp. 23–34.

Orlov D. S., Himija pochv (Chemistry of Soils), Moscow: Izd-vo MGU, 1985, 376 p.

Paradelo R., Celeiro M., Herbón C., Barral M. T., García-Jares C., Polycyclic aromatic hydrocarbons concentration and spatial distribution in the soils of Santiago de Compostela (northwestern Spain), Geoderma Regional, 2023, Vol. 34, pp. e00703, DOI: 10.1016/j.geodrs.2023.e00703.

Pickett S. T. A., Cadenasso M. L., Grove J. M., Boone C. G., Groffman P. M., Irwin E., Warren P. Urban ecological systems: scientific foundations and a decade of progress, Journal of Environmental Management, 2011, Vol. 92, pp. 331–362.

Pindral S., Kot R., Malinowska A., Hulisz P., The effect of technogenic materials on fine-scale soil heterogeneity in a human-transformed landscape, Catena, 2023, Vol. 221, p. 106772. DOI: 10.1016/j.catena.2022.106772.

Prasolov L. I., O chernozeme Priazovskih stepej (About the black soil of the Azov steppes), Pochvovedenie, 1916, No 1, pp. 23–46.

Qu Y., Ma J., Chen Y., Zhao W., Sun Y., Gou Z., Soil microbial response to multipollutant exposure in megacity parks: a study in Beijing, Soil & Environmental Health, 2024, pp. 100079, DOI: 10.1016/j.seh.2024.100079.

Seto K. C., Fragkias M., Güneralp B., Reilly M. K., A Meta-analysis of global urban land expansion, PLoS one, 2011, Vol. 6, p. e23777.

Shishov L. L., Tonkonogov V. D., Lebedeva I. I., Gerasimova M. I., Klassifikacija i diagnostika pochv Rossii (Classification and diagnostics of soils of Russia), Smolensk: Ojkumena, 2004, 341 p.

Skripnikov P. N., Gorbov S. N., Matetskaya A. Y., Ivolgina V. A., Specifics of Accumulation and Profile Distribution of Organic Carbon in Soils of Park and Recreational Areas of Rostov Agglomeration, Smart and Sustainable Cities Conference, Cham: Springer Nature Switzerland, 2022, pp. 181–193.

Skripnikov P. N., Osobennosti nakoplenija i profil’nogo raspredelenija ugleroda v pochvah Rostovskoj aglomeracii, Diss. kand. biol. nauk (Features of accumulation and profile distribution of carbon in soils of Rostov agglomeration), Rostov-on-Don: SFU, 2023, 196 p.

Skripnikov P. N., Gorbov S. N., Mateckaja A. Ju., Tagiverdiev S. S., Salnik N. V., Osobennosti nakoplenija i profil’nogo raspredelenija razlichnyh form ugleroda v pochvah parkovo-rekreacionnoj zony Rostovskoj aglomeracii (Features of accumulation and profile distribution of various forms of carbon in soils of park-recreational zone of Rostov agglomeration), Nauka Juga Rossii, 2023, Vol. 19, No 4, pp. 52–66, DOI: 10.7868/S25000640230405.

Tagiverdiev S. S., Bezuglova O. S., Gorbov S. N., Skripnikov P. N., Kozyrev D. A., Aggregate Composition as Related to the Distribution of Different Forms of Carbon in Soils of Rostov Agglomeration, Eurasian Soil Science, 2021, Vol. 54, No 9, pp. 1427–1432, DOI: 10.1134/S106422932109012X.

Val’kov V. F., Genezis pochv Severnogo Kavkaza (Genesis of Soils of the North Caucasus), Rostov-na-Donu: Izd-vo Rostovskogo universiteta, 1977, 160 p.

Val’kov V. F., Kazeev K. Sh., Kolesnikov S. I., Pochvovedenie (Soil Science), Moscow: Izd-vo Jurajt, 2014, 527 p.

Vasenev V. I., Smagin A. V., Ananyeva N. D., Ivashchenko K. V., Gavrilenko E. G., Prokofeva T. V., Paltseva A., Stoorvogel J. J., Gosse D. D., Valentini R., Urban Soil’s Functions: Monitoring, Assessment, and Management, Adaptive soil management: from theory to practices, Springer, Singapore, 2017, pp. 359–409.

Vasenev V. I., Van Oudenhoven A. P. E., Romzaykina O. N., Hajiaghaeva R. A., The Ecological Functions and Ecosystem Services of Urban and Technogenic Soils: from Theory to Practice (A Review), Eurasian Soil Sc., 2018, Vol. 51, pp. 1119–1132, DOI: 10.1134/S1064229318100137.

Vypova A. A., Kirichkova I. V., Jekologicheskaja rol’ zelenyh nasazhdenij v sozdanii optimal’noj gorodskoj sredy (Ecological role of green spaces in creating an optimal urban environment), E-Scio, 2020, Vol. 43, No 4, pp. 387–393.

Wise T. A., Can we feed the world in 2050, A scoping paper to assess the evidence. Global Development and Environment Institute Working Paper, 2013, No.13-04, 36 p.

Wessolek G., Toland A., Devil in the Sand – the Case of Teufelsberg Berlin and Cultural Ecosystem Services Provided by Urban Soils, Soils within Cities. IUSS Working Group SUITMA. Catena Soil Sciences. Stuttgart, 2017, Vol. 19, pp. 231–240.

Zakharikhina L. V., Malyukova L. S., Ryndin A. V., Genesis and geochemistry of the soils of urban landscapes of the Black Sea coast of Russia, Catena, 2022, Vol. 210, pp. 105881, DOI: 10.1016/j.catena.2021.105881.

Zemljakova A. V., Gorodskie pochvy kak neotemlemyj komponent urbojekosistemy (Urban soils as an integral component of the urban ecosystem), Regional’nye geosistemy, 2011, Vol. 17, No. 21(116), pp. 102–107.

Zheng K., Xian Z., Liao W., Chen Y., Urbanization impacts on sequential flood-heatwave events in the Guangdong-Hong Kong-Macao Greater Bay Area, China, Urban Climate, 2024, Vol. 55, pp. 101878. DOI: 10.1016/j.uclim.2024.101878.