• DOI: 10.31509/2658-607x-202583-175
  • УДК 614.842; 630*96

DEVELOPMENT OF AN OPEN SOURCE QGIS PLUG-IN FOR ASSESSING THE QUALITY OF ROAD NETWORK DATA IN REGIONAL FORESTRY TRANSPORTATION PROJECTS

                  E. S. Podolskaia1*, I. M. Zinyaev2

                         1 Isaev Centre for Forest Ecology and Productivity of the RAS

                      Profsoyuznaya st. 84/32 bldg. 14, Moscow 117997, Russia            

2MIREA – Russian Technological University

Vernadsky avenue, 78, Moscow 119454, Russia

*E-mail: podols_kate@mail.ru

Received: 02.06.2025

Revised: 19.06.2025

Accepted: 15.07.2025

Paper presents the development of a plugin for Open Source QGIS for automated assessment of data quality of road network when solving the logistics and transport problems of the forestry complex and infrastructure projects in a Russian region (Novosibirsk region). Automation of data quality assessment is especially relevant in the context of Open Data use, diversity and an increase in the number of sources. National standards, industry documents, cases of Russian companies were studied. The developed plug-in “Compare_road” is used to analyze and verify data on roads in the format of vector linear files. During the analysis, the following metrics are calculated: accuracy of compliance, completeness and data relevance. Plug-in is published on GitHub under the MIT license. The target audience of the plug-in is researchers, students and amateur-users. To test the work of the plug-in, an analysis of data on the road network of the Novosibirsk region of the Natural Earth, VMAP, Digital Chart of the World projects was carried out using OSM as a reference. The best accuracy indicators were shown by the Digital Chart of the World – 270.7 m, the best VMAP data completeness indicator – 22.6%. The analysis of roads data quality for the forestries of Novosibirsk region was carried out. Best quality resullts have Tatarskoye (127.6 m, 35.9 %) and Maslyaninskoye (154 m, 35.9 %), worst – Kushtovskoye (378.5 m, 0.7 %) and Suzunskoye (418 m, 1.5 %).  

Keywords: GIS, Open Source, QGIS, plug-in, OSM, Natural Earth, road network, quality assessment

 

REFERENCES

Biljecki F., Chow Y. S., Lee K., Quality of crowdsourced geospatial building information: A global assessment of OpenStreetMap attributes. Building and Environment, June 2023, Vol. 237, pp. 1–19.

Chen Y., Wei Z., Zhou Q., Assessing completeness of global airport data in OSM, Advances in Cartography and GIScience of the ICA, August 2023, Vol. 4, pp. 1–8.

Diva-GIS, URL:  https://diva-gis.org/data.html (2025, 1 June)

Dvorkin B. A., Infrastruktura prostranstvennyh dannyh: regional’nyj aspekt (Spatial data infrastructure: regional perspective), Geomatika, 2014, No 1, pp. 17–21.

Dyshlenko S. G., Analiz i razrabotka harakteristik kachestva geodannyh (Analysis and development of geodata quality characteristics), Perspektivy nauki i obrazovanija, 2016, No. 2(20), pp. 23–27.

Elias E., Amorim F., Silva L., Schmidt M., Camboim S., Fernandes V., A proposal for a QGIS plugin for spatio-temporal analysis of OSM data quality: the case study for the city of Salvador, Brazil. State of The Map 2021, 9–11 July 2021, pp. 27–30.

Gokceoglu C. Quality analysis of Big Geodata via Machine learning. International Conference on Data Science, Machine Learning and Statistics 2019, Van, Turkey, 26–29 June 2019. 30 slides.

GOST Р 57773-2017, URL: https://files.stroyinf.ru/Data/655/65547.pdf (2025, 1 June)

https://habr.com/ru/companies/lemana_tech/articles/857044/ (2025, 1 June)

https://habr.com/ru/companies/sibur_official/articles/860372/ (2025, 1 June)

https://mpr.nso.ru/page/653  (2025, 1 June)

ISO 19157:2013, URL: (https://docs.cntd.ru/document/1200157078 (2025, 1 June)

Kin D., Lazorenko N., The method for the quality evaluation of open geospatial data for creation and updating of datasets for National Spatial Data Infrastructure in Ukraine, Polish Cartographical Review, September 2021, Vol. 53, pp. 13–20.

LineComparison, URL:  https://plugins.qgis.org/plugins/linecomparison/ (2025, 1 June)

LineSimilarity, URL:  https://plugins.qgis.org/plugins/line_similarity/ (2025, 1 June)

Lur’e I. K., Geoinformacionnoe kartografirovanie. Metody geoinformatiki i cifrovoj obrabotki kosmicheskih snimkov (Geoinformation mapping. Methods of geoinformatics and digital processing of space images), Moscow: KDU, 2010, 424 p.

Martynova E. V., Metodika ocenki kachestva prostranstvennyh dannyh (Methodology for assessing the quality of spatial data), Jekonomika i upravlenie: problemy, reshenija, 2023, No. 7, Vol. 2, pp. 111–118.

Mocnik F.-B., Mobasheri A., Zipf A., Open Source data mining infrastructure for exploring and analyzing OpenStreetMap. Open Geospatial Data, Software and Standards, May 2018, Vol. 3, pp. 1-15.

Moradi M., Roche S., Mostafavi M.A, Evaluating OSM Building Footprint Data Quality in Quebec Province, Canada from 2018 to 2023: A Comparative Study, Geomatics, December 2023, Vol. 3, pp. 541–562.

Natural Earth, URL: https://www.naturalearthdata.com/ (2025, 1 June)

ODM 218.9.008–2019, Geoinformacionnye sistemy avtomobil’nyh dorog: poryadok sbora, hraneniya i obnovleniya dannyh: otraslevoj dorozhnyj metodicheskij document (Geographic information systems for highways: procedure for collecting, storing and updating data: industry road methodological document), Federal’noe dorozhnoe agentstvo, July 29. No 1983-r, OOO «IndorSoft», Moscow: «Informavtodor», 2021, 72 p.

Open Street Map, URL: www.openstreetmap.org (2025, 1 June)

Plugin Builder, URL:  https://plugins.qgis.org/plugins/pluginbuilder/ (2025, 1 June)

Pobedinskij G. G., Prusakov A. N., O kriterijah kachestva gosudarstvennyh geoprostranstvennyh dannyh Rossijskoj Federacii (On the quality criteria for state geospatial data of the Russian Federation) Rossija: tendencii i perspektivy razvitija (Russia: Trends and Development Prospects), Moscow, 20–21 December 2018, Moscow: Institut nauchnoj informacii po obshhestvennym naukam RAN, 2019, No. 14-1, pp. 190–197.

QGIS, URL:  https://plugins.qgis.org (2025, 1 June)

QuickOSM, URL:  https://plugins.qgis.org/plugins/QuickOSM/ (2025, 1 June)

Repozitorij, URL: https://github.com/IgorZinyaev/compare_road (2025, 1 June)

Roads of the Former Soviet Union, URL: clck.ru/3PKxcb (2025, 1 June)

Sehra S., Singh J., Rai H., A Systematic Study of OpenStreetMap Data Quality Assessment. 2014 Eleventh International Conference on Information Technology: New Generations, Las-Vegas, NV, 7–9 April 2014, pp. 377–380.

VMAP Level 1, URL:  https://www.mapability.com/info/vmap1_intro.php (2025, 1 June)

Wagner M., Henzen C., Quality Assurance for Spatial Research Data, ISPRS International Journal of Geo-Information, June 2022, No. 11(6), pp. 334.

Wang M., Li Q., Hu Q., Zhou M., Quality analysis of Open Street Map data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, May 2013, Vol. 40, pp. 155–158.

Zhang X., Anc J., Zhouc Y., Yang M, and Zhao X., How sustainable is OpenStreetMap? Tracking individual trajectories of editing behavior. International journal of digital Earth, February 2024, Vol. 17, No. 1, pp. 1–21.