• DOI 10.31509/2658-607x-202252-112
  • УДК 574.474

MODELING THE DYNAMICS OF FOREST ECOSYSTEMS TAKING INTO ACCOUNT THEIR STRUCTURAL HETEROGENEITY AT DIFFERENT FUNCTIONAL AND SPATIAL LEVELS

V. N. Shanin1, 2, P. V. Frolov1, I. V. Priputina1, O. G. Chertov3, S. S. Bykhovets1, E. V. Zubkova1, A. M. Portnov1, G. G. Frolova1, M. N. Stamenov1, P. Y. Grabarnik1

1Institute of Physicochemical and Biological Problems in Soil Science

Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya 2, 142290 Pushchino, Russia

2Center for Forest Ecology and Productivity of the Russian Academy of Sciences

Profsoyuznaya st., 84/32, bld. 14, 117997 Moscow, Russia

3Bingen University of Applied Sciences

Berlin Str. 109, 55411 Bingen, Germany

 

E‑mail: shaninvn@gmail.com

Received: 08.09.2022

Revised: 15.10.2022

Accepted: 28.10.2022

In many problems of modern forest ecology, it is necessary to analyze the conjugated dynamics of processes occurring at different spatio-temporal scales of the functioning of plant communities and soils resulted from their interaction under the influence of all edaphic and anthropogenic factors. Mathematical models can be an efficient tool for such analysis. The aim of this study is to present the implementation of a new system of models that makes it possible to reproduce in simulation experiments the spatial structure of forest phytocenoses formed by tree and grass-shrub layers, as well as associated heterogeneity of soil conditions and the diversity of ecological niches at different hierarchical levels. To determine the required level of detail of the spatial heterogeneity of forest biogeocenoses related to the processes of their multi-scale functioning, experimental studies were carried out on permanent sampling plots in the Prioksko-Terrasny State Natural Biosphere Reserve and in the “Kaluzhskie Zaseki” State Nature Reserve. The spatial structure of communities and related heterogeneity of ecological conditions were studied using traditional soil and geobotanical, as well as modern instrumental methods. The obtained data were used to construct the algorithms and to estimate the parameters of different blocks of the new system of models. The implementation of a spatially-explicit process-based system of models has shown its ability to reproduce the dynamics of forest ecosystems, taking into account the species composition and spatial structure of different layers of vegetation and the associated patchiness of soil conditions. Because of a wide range of interrelated ecosystem characteristics implemented in the system of models it is possible to simulate productivity, biological turnover of C and N, and the dynamics of forest ecosystems, taking into account their characteristic spatial structure at different scales. This makes it possible to improve the understanding of ecosystem processes and their contribution to maintaining the sustainable functioning of forests, which can be used for predictive assessments of the efficiency of forest management techniques and in solving other forestry and environmental problems.

Key words: simulation models, spatial structure, tree stand productivity, ground layer vegetation, forest soils, soil nutrients, carbon cycle

 

REFERENCES

Abrazhko M. A., Reakcija tonkih kornej eli na iskljuchenie kornevoj konkurencii sosednih derev’ev (The reaction of thin spruce roots to the exclusion of root competition of neighboring trees), Lesovedenie, 1982, No 6, pp. 41–46.

Alberti G., Candido P., Peressotti A., Turco S., Piussi P., Zerbi G., Aboveground biomass relationships for mixed ash (Fraxinus excelsior L. and Ulmus glabra Hudson) stands in Eastern Prealps of Friuli Venezia Giulia (Italy), Annals of Forest Science, 2005, Vol. 62, No 8, pp. 831–836, DOI: 10.1051/forest:2005089.

Aldea J., Ruiz‑Peinado R., del Río M., Pretzsch H., Heym M., Brazaitis G., Jansons A., Metslaid M., Barbeito I., Bielak K., Granhus A., Holm S.-O., Nothdurft A., Sitko R., Löf M., Species stratification and weather conditions drive tree growth in Scots pine and Norway spruce mixed stands along Europe, Forest Ecology and Management, 2021, Vol. 481, ID 118697, DOI: 10.1016/j.foreco.2020.118697.

Amichev B. Y., Johnston M., van Rees K. C. J., Hybrid poplar growth in bioenergy production systems: Biomass prediction with a simple process-based model (3PG), Biomass and Bioenergy, 2010, Vol. 34, No 5, pp. 687–702, DOI: 10.1016/j.biombioe.2010.01.012.

Appleby R. F., Davies W. J., A possible evaporation site in the guard cell wall and the influence of leaf structure on the humidity response by stomata of woody plants, Oecologia, 1983, Vol. 56, No 1, pp. 30–40, DOI: 10.1007/BF00378214.

Arhangelskaya T. A., Temperaturnyj rezhim kompleksnogo pochvennogo pokrova (Temperature regime of complex soil cover), Moscow: GEOS, 2012, 282 p.

Arkhangelskaya T. A., Gvozdkova A. A., Thermal diffusivity of peat-sand mixtures, IOP Conference Series: Earth and Environmental Science, 2019, Vol. 368, ID 012005, DOI: 10.1088/1755-1315/368/1/012005.

Arii K., Parrott L., Examining the colonization process of exotic species varying in competitive abilities using a cellular automaton model, Ecological Modelling, 2006, Vol. 199, No 3. pp. 219–228, DOI: 10.1016/j.ecolmodel.2006.05.032.

Aschan G., Wittmann C., Pfanz H., Age-dependent bark photosynthesis of aspen twigs, Trees, 2001, Vol. 15, pp. 431–437, DOI: 10.1007/s004680100120.

Badache M., Eslami‑Nejad P., Ouzzane M., Aidoun Z., Lamarche L., A new modeling approach for improved ground temperature profile determination, Renewable Energy, 2016, Vol. 85, pp. 436–444, DOI: 10.1016/j.renene.2015.06.020.

Badía D., López‑García S., Martí C., Ortíz‑Perpiñá O., Girona‑García A., Casanova‑Gascón J., Burn effects on soil properties associated to heat transfer under contrasting moisture content, Science of the Total Environment, 2017, Vol. 601–602, pp. 1119–1128, DOI: 10.1016/j.scitotenv.2017.05.254.

Balboa‑Murias M. A., Rojo A., Álvarez J. G., Merino A., Carbon and nutrient stocks in mature Quercus robur L. stands in NW Spain, Annals of Forest Science, 2006, Vol. 63, No 5, pp. 557–565, DOI: 10.1051/forest:2006038.

Baldocchi D. D., Law B. E., Anthoni P. M., On measuring and modeling energy fluxes above the floor of a homogeneous and heterogeneous conifer forest, Agricultural and Forest Meteorology, 2000, Vol. 102, No 2–3, pp. 187–206, DOI: 10.1016/S0168-1923(00)00098-8.

Balland V., Pollacco J. A. P., Arp P. A., Modeling soil hydraulic properties for a wide range of soil conditions, Ecological Modelling, 2008, Vol. 219, No 3–4, pp. 300–316, DOI: 10.1016/j.ecolmodel.2008.07.009.

Baneva N. A., Izmenenie massy melkih kornej eli v chistyh drevostojah (Change in mass of small spruce roots in pure stands), Lesovedenie, 1980, No 1, pp. 86–89.

Barbeito I., Dassot M., Bayer D., Collet C., Drössler L., Löf M., del Rio M., Ruiz‑Peinado R., Forrester D. I., Bravo‑Oviedo A., Pretzsch H., Terrestrial laser scanning reveals differences in crown structure of Fagus sylvatica in mixed vs. pure European forests, Forest Ecology and Management, 2017, Vol. 405, pp. 381–390, DOI: 10.1016/j.foreco.2017.09.043.

Bauer G., Schulze E.‑D., Mund M., Nutrient contents and concentrations in relation to growth of Picea abies and Fagus sylvatica along a European transect, Tree Physiology, 1997, Vol. 17, No 12, pp. 777–786, DOI: 10.1093/treephys/17.12.777.

Bayer D., Reischl A., Rötzer T., Pretzsch H., Structural response of black locust (Robinia pseudoacacia L.) and small-leaved lime (Tilia cordata Mill.) to varying urban environments analyzed by terrestrial laser scanning: Implications for ecological functions and services, Urban Forestry & Urban Greening, 2018, Vol. 35, pp. 129–138, DOI: 10.1016/j.ufug.2018.08.011.

Belyazid S., Sverdrup H., Kurz D., Braun S., Exploring ground vegetation change for different deposition scenario and methods of estimating critical loads or biodiversity using ForSAFE‑VEG model in Switzerland and Sweden, Water, Air and Soil Pollution, 2011, Vol. 216, pp. 289–317, DOI: 10.1007/s11270-010-0534-6.

Berger U., Piou C., Schiffers K., Grimm V., Competition among plants: Concepts, individual-based modeling approaches, and a proposal for a future research strategy, Perspectives in Plant Ecology, Evolution and Systematics, 2008, Vol. 9, No 3–4, pp. 121–135, DOI: 10.1016/j.ppees.2007.11.002.

Berlin N. G., Kabanov S. V., Mashtakov D. A., Vertikal’naja struktura nadzemnoj fitomassy dubovyh polezashhitnyh lesnyh polos na juzhnyh chernozjomah stepi pravoberezh’ja Saratovskoj oblasti (Vertical structure of the above-ground phytomass of oak field-protective forest belts on the southern chernozems of the steppe right bank of the Saratov region), Vestnik Altajskogo gosudarstvennogo agrarnogo universiteta, 2015, No 5 (127), pp. 87–94.

Betehtina A. A., Bolshakov V. N., Nekrasova O. A., Radchenko T. A., Malygin M. V., Dergacheva M. I., Samozarastanie zolootvalov: ocenka mikorizoobrazovanija, soderzhanija azota i ugleroda v tonkih kornjah Betula pendula Roth. i Populus tremula L. (Self-overgrowing ash dumps: assessment of mycorrhizal formation, nitrogen and carbon content in the fine roots of Betula pendula Roth. and Populus tremula L.), VII Mezhdunarodnaja nauchno-prakticheskaja konferencija “Jekologicheskaja i tehnosfernaja bezopasnost’ gornopromyshlennyh regionov” (VII International Scientific and Practical Conference “Environmental and Technosphere Safety of Mining and Industrial Regions), proceedings, Ekaterinburg, 9 April 2019, executive editor A. I. Semjachkov, Ekaterinburg: Institut jekonomiki UrO RAN, Uralskij gosudarstvennyj gornyj universitet, 2019, pp. 34–39.

Bielak K., Dudzińska M., Pretzsch H., Mixed stands of Scots pine (Pinus sylvestris L.) and Norway spruce [Picea abies (L.) Karst] can be more productive than monocultures. Evidence from over 100 years of observation of long-term experiments, Forest Systems, 2014, Vol. 23, No 3, pp. 573–789, DOI: 10.5424/fs/2014233-06195.

Bobkova K. S., Biologicheskaja produktivnost’ hvojnyh lesov Evropejskogo Severo-Vostoka (Biological productivity of coniferous forests of the European Northeast), Leningrad: Nauka, 1987, 156 p.

Bobkova K. S., Stroenie kornevyh sistem drevesnyh porod v razlichnyh tipah sosnovyh lesov Zelenoborskogo stacionara (The structure of root systems of tree species in various types of pine forests of the Zelenoborsky station), Voprosy jekologii sosnjakov Severa: Trudy Komi filiala AN SSSR (Problems of ecology of pine forests of the North: Proceedings of the Komi branch of the Academy of Sciences of the USSR), 1972, Vol. 24, pp. 52–69.

Bobkova K. S., Galenko J. P., Zagirova S. V., Patov A. I., Sostav i struktura drevostoev korennyh el’nikov predgorij Urala bassejna verhnej Pechory (Composition and structure of native spruce stands in the foothills of the Urals in the Upper Pechora basin), Lesovedenie, 2007, No 3, pp. 23–31.

Bobkova K. S., Urnyshev A. P., Urnyshev V. A., Vertikal’noe raspredelenie fitomassy v elovyh lesah evropejskogo Severo-Vostoka (Vertical distribution of phytomass in spruce forests of the European Northeast), Lesovedenie, 2000, No 3, pp. 49–54.

Bobrovskij M. V., Lesnye pochvy Evropejskoj Rossii (Forest soils of European Russia), Moscow: Tov-vo nauchn. izd. KMK, 2010, 359 p.

Bobrovskij M. V., Lojko S. V., Vozrast i osobennosti genezisa temnogumusovyh pochv “Kaluzhskih zasek” (Age and features of the genesis of dark-humus soils of the “Kaluzhskiye zaseki”), Vestnik MGU, Ser. Geogr., 2019, No 5, pp. 108–117.

Bocock K. L., Changes in the amounts of dry matter, nitrogen, carbon and energy in decomposing woodland leaf litter in relation to the activities of the soil fauna, Journal of Ecology, 1964, Vol. 52, No 2, pp. 273–284, DOI: 10.2307/2257595.

Bolte A., Villanueva I., Interspecific competition impacts on the morphology and distribution of fine roots in European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.), European Journal of Forest Research, 2006, Vol. 125, pp. 15–26, DOI: 10.1007/s10342-005-0075-5.

Bonten L. T. C., Groeneberg J. E., Meesenburg H., De Vries W., Using advanced surface complexation models for modelling soil chemistry under forests: Solling forest, Germany, Environmental Pollution, 2011, Vol. 159, No 10, pp. 2831–2839, DOI: 10.1016/j.envpol.2011.05.002.

Brandtberg P.‑O., Bengtsson J., Lundkvist H., Distributions of the capacity to take up nutrients by Betula spp. and Picea abies in mixed stands, Forest Ecology and Management, 2004, Vol. 198, No 1–3. pp. 193–208, DOI: 10.1016/j.foreco.2004.04.012.

Brassard B. W., Chen H. Y. H., Bergeron Y., Paré D., Differences in fine root productivity between mixed- and single-species stands, Functional Ecology, 2011, Vol. 25, No 1, pp. 238–246, DOI: 10.1111/j.1365-2435.2010.01769.x.

Braun S., Flückiger W., Soil amendments for plantings of urban trees, Soil and Tillage Research, 1998, Vol. 49, No 3, pp. 201–209, DOI: 10.1016/S0167-1987(98)00172-X.

Bréda N., Granier A., Barataud F., Moyne C., Soil water dynamics in an oak stand. I. Soil moisture, water potentials and water uptake by roots, Plant and Soil, 1995, Vol. 172, No 1, pp. 17–27, DOI: 10.1007/BF00020856.

Bristow K. L., Campbell G. S., On the relationship between incoming solar radiation and daily maximum and minimum temperature, Agricultural and Forest Meteorology, 1984, Vol. 31, No 2, pp. 159–166, DOI: 10.1016/0168-1923(84)90017-0.

Brunner A., A light model for spatially explicit forest stand models, Forest Ecology and Management, 1998, Vol. 107, No 1–3, pp. 19–46, DOI: 10.1016/S0378-1127(97)00325-3.

Brunner I., Bakker M. R., Björk R. G., Hirano Y., Lukac M., Aranda X., Børja I., Eldhuset T. D., Helmisaari H.‑S., Jourdan C., Konôpka B., López B. C., Pérez C. M., Persson H., Ostonen I., Fine-root turnover rates of European forests revisited: an analysis of data from sequential coring and ingrowth cores, Plant and Soil, 2013, Vol. 362, pp. 357–372, DOI: 10.1007/s11104-012-1313-5.

Büttner V., Leuschner C., Spatial and temporal patterns of fine root abundance in a mixed oak-beech forest, Forest Ecology and Management, 1994, Vol. 70, No 1–3, pp. 11–21, DOI: 10.1016/0378-1127(94)90071-X.

Campbell G. S., A simple method for determining unsaturated conductivity from moisture retention data, Soil Science, 1974, Vol. 117, No 6, pp. 311–314, DOI: 10.1097/00010694-197406000-00001.

Campbell G. S., Extinction coefficients for radiation in plant canopies calculated using an ellipsoidal inclination angle distribution, Agricultural and Forest Meteorology, 1986, Vol. 36, No 4, pp. 317–321, DOI: 10.1016/0168-1923(86)90010-9.

Campbell G. S., Soil physics with BASIC: transport models for soil-plant systems, Elsevier Science, 1985, 150 p.

Casper B. B., Schenk H. J., Jackson R. B., Defining a plant’s belowground zone of influence, Ecology, 2003, Vol. 84, No 9, pp. 2313–2321, DOI: 10.1890/02-0287.

Cavard X., Bergeron Y., Chen H. Y. H., Paré D., Laganière J., Brassard B., Competition and facilitation between tree species change with stand development, Oikos, 2011, Vol. 120, No 11, pp. 1683–1695, DOI: 10.1111/j.1600-0706.2011.19294.x.

Celniker J. L., Korzuhin M. D., Semenov S. M., Model’nyj analiz shirotnogo raspredelenija produktivnosti lesnyh porod Rossii (Model analysis of the latitudinal distribution of productivity of forest species in Russia), Lesovedenie, 2010, No 2, pp. 36–45.

Celniker J. L., Korzuhin M. D., Suvorova G. G., Jankova L. S., Kopytova L. D., Filippova A. K., Analiz vlijanija faktorov sredy na fotosintez hvojnyh Predbajkal’ja (Analysis of the influence of environmental factors on photosynthesis of coniferous Cisbaikalia), Problemy jekologicheskogo monitoringa i modelirovanija jekosistem, 2007, Vol. 21, pp. 265–292.

Celniker J. L., Malkina I. S., Gurcev A. I., Nikolaev D. K., Kolichestvennaja ocenka svetovogo rezhima po morfostrukturnym pokazateljam kron podrosta eli (Quantitative assessment of the light regime by morphostructural parameters of spruce undergrowth crowns), Lesovedenie, 1999, No 4, pp. 64–69.

Cescatti A., Modelling the radiative transfer in discontinuous canopies of asymmetric crowns. I. Model structure and algorithms, Ecological Modelling, 1997a, Vol. 101, No 2–3, pp. 263–274, DOI: 10.1016/S0304-3800(97)00050-1.

Cescatti A., Modelling the radiative transfer in discontinuous canopies of asymmetric crowns. II. Model testing and application in a Norway spruce stand, Ecological Modelling, 1997b, Vol. 101, No 2–3, pp. 275–284, DOI: 10.1016/S0304-3800(97)00055-0.

Chalhoub M., Bernier M., Coquet Y., Philippe M., A simple heat and moisture transfer model to predict ground temperature for shallow ground heat exchangers, Renewable energy, 2017, Vol. 103, pp. 295–307, DOI: 10.1016/j.renene.2016.11.027.

Chenlemuge T., Hertel D., Dulamsuren C., Khishigjargal M., Leuschner C., Hauck M., Extremely low fine root biomass in Larix sibirica forests at the southern drought limit of the boreal forest, Flora, 2013, Vol. 208, No 8–9, pp. 488–496, DOI: 10.1016/j.flora.2013.08.002.

Chertov O. G., Komarov A. S., Tsiplianovsky A. V., A combined simulation model of Scots pine, Norway spruce and Silver birch ecosystems in European boreal zone, Forest Ecology and Management, 1999, Vol. 116, No 1–3, pp. 189–206, DOI: 10.1016/S0378-1127(98)00456-3.

Chertov O. G., Jekologija lesnyh zemel’. Pochvenno-jekologicheskoe issledovanie lesnyh mestoobitanij (Ecology of forest lands. Soil-ecological study of forest habitats), Moscow: Nauka, 1981, 192 p.

Chertov O. G., Komarov A. S., Nadporozhskaya M. A., Bykhovets S. S., Zudin S. L., ROMUL — a model of forest soil organic matter dynamics as a substantial tool for forest ecosystem modelling, Ecological Modelling, 2001, Vol. 138, No 1–3, pp. 289–308, DOI: 10.1016/S0304-3800(00)00409-9.

Chertov O. G., Grabarnik P. Y., Shanin V. N., Bykhovets S. S., Petropavlovskij B. S., Priputina I. V., Frolov P. V., Zubkova E. V., Dinamicheskie modeli nazemnyh jekosistem dlja kolichestvennoj ocenki produktivnosti rastitel’nosti (Dynamic Terrestrial Ecosystem Models for Quantitative Evaluation of Vegetation Productivity), Rastitel’nye resursy, 2019, No 2, pp. 151–169, DOI: 10.1134/S0033994619020031.

Chertov O. G., Komarov A. S., Bykhovets S. S., Bhatti J. S., Razlichie jekologicheskih strategij hvojnyh porod v evropejskih i kanadskih boreal’nyh lesah (Difference in ecological strategies of conifers in European and Canadian boreal forests), Biosfera, 2015, Vol. 7, No 3, pp. 328–337.

Chertov O., Komarov A., Shaw C., Bykhovets S., Frolov P., Shanin V., Grabarnik P., Priputina I., Zubkova E., Shashkov M., Romul_Hum — A model of soil organic matter formation coupling with soil biota activity. II. Parameterisation of the soil food web biota activity, Ecological Modelling, 2017a, Vol. 345, pp. 125–139, DOI: 10.1016/j.ecolmodel.2016.10.024.

Chertov O., Shaw C., Shashkov M., Komarov A., Bykhovets S., Shanin V., Grabarnik P., Frolov P., Kalinina O., Priputina I., Zubkova E., Romul_Hum model of soil organic matter formation coupled with soil biota activity. III. Parameterisation of earthworm activity, Ecological Modelling, 2017b, Vol. 345, pp. 140–149, DOI: 10.1016/j.ecolmodel.2016.06.013.

Chertov O., Kuzyakov Y., Priputina I., Frolov P., Shanin V., Grabarnik P., Modelling the rhizosphere priming effect in combination with soil food webs to quantify interaction between living plant, soil biota and soil organic matter, Plants, 2022, Vol. 11, No 19, ID 2605, DOI: 10.3390/plants11192605.

Chumachenko S. I., Korotkov V. N., Palenova M. M., Politov D. V., Simulation modeling of long-term stand dynamics at different scenarios of forest management for coniferous-broad-leaved forests, Ecological Modelling, 2003, Vol. 170, No 2–3, pp. 345–362, DOI: 10.1016/S0304-3800(03)00238-2.

Collalti A., Perugini L., Santini M., Chiti T., Nolè A., Matteucci G., Valentini R., A process-based model to simulate growth in forests with complex structure: Evaluation and use of 3D‑CMCC forest ecosystem model in a deciduous forest in Central Italy, Ecological Modelling, 2014, Vol. 272, pp. 362–378, DOI: 10.1016/j.ecolmodel.2013.09.016.

Coops N. C., Waring R. H., Law B. E., Assessing the past and future distribution and productivity of ponderosa pine in the Pacific Northwest using a process model, 3‑PG, Ecological Modelling, 2005, Vol. 183, No 1, pp. 107–124, DOI: 10.1016/j.ecolmodel.2004.08.002.

Cosby B. J., Ferrier R. C., Jenkins A., Wright R. F., Modelling the effects of acid deposition: refinements, adjustments and inclusion of nitrogen dynamics in the MAGIC model, Hydrology and Earth System Sciences, 2001, Vol. 5, No 3, pp. 499–517, DOI: 10.5194/hess-5-499-2001.

Cosby B. J., Hornberger G. M., Clapp R. B., Ginn T., A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils, Water Resources Research, 1984, Vol. 20, No 6, pp. 682–690, DOI: 10.1029/WR020i006p00682.

Dahlhausen J., Biber P., Rötzer T., Uhl E., Pretzsch H., Tree species and their space requirements in six urban environments worldwide, Forests, 2016, Vol. 7, No 6, ID 111, DOI: 10.3390/f7060111.

Daikoku K., Hattori S., Deguchi A., Aoki Y., Miyashita M., Matsumoto K., Akiyama J., Iida S., Toba T., Fujita Y., Ohta T., Influence of evaporation from the forest floor on evapotranspiration from the dry canopy, Hydrological Processes, 2008, Vol. 22, No 20, pp. 4083–4096, DOI: 10.1002/hyp.7010.

Daniels R. F., Burkhart H. E., Clason T. R., A comparison of competition measures for predicting growth of loblolly pine trees, Canadian Journal of Forest Research, 1986, Vol. 16, No 6, pp. 1230–1237, DOI: 10.1139/x86-218.

Danilin I. M., Tselitan I. A., Dynamics of forest ecosystems regenerated on burned and harvested areas in mountain regions of Siberia: Characteristics of biological diversity, structure and productivity, Siberian Journal of Forest Science, 2016, No 6, pp. 60–72, DOI: 10.15372/SJFS20160606.

Dannenmann M., Simon J., Gasche R., Holst J., Naumann P. S., Kögel‑Knabner I., Knicker H., Mayer H., Schloter M., Pena R., Polle A., Rennenberg H., Papen H., Tree girdling provides insight on the role of labile carbon in nitrogen partitioning between soil microorganisms and adult European beech, Soil Biology and Biochemistry, 2009, Vol. 41, No 8, pp. 1622–1631, DOI: 10.1016/j.soilbio.2009.04.024.

Dauer J., Withington J., Oleksyn J., Chorover J., Chadwick O., Reich P., Eissenstat D., A scanner-based approach to soil profile-wall mapping of root distribution, Dendrobiology, 2009, Vol. 62, pp. 35–40.

De Jaegere T., Hein S., Claessens H. A., A review of the characteristics of small-leaved lime (Tilia cordata Mill.) and their implications for silviculture in a changing climate, Forests, 2016, Vol. 7, No 3, ID 56, DOI: 10.3390/f7030056.

Dejneko I. P., Faustova N. M., Jelementnyj i gruppovoj himicheskij sostav kory i drevesiny osiny (Elemental and group chemical composition of aspen bark and wood), Himija rastitel’nogo syr’ja, 2015, No 1, pp. 51–62, DOI: 10.14258/jcprm.201501461.

Dhiedt E., Baeten L., De Smedt P., Jaroszewicz B., Verheyen K., Tree neighbourhood-scale variation in topsoil chemistry depends on species identity effects related to litter quality, European Journal of Forest Research, 2022, Vol. 141, pp. 1163–1176, DOI: 10.1007/s10342-022-01499-9.

Dhungel R., Aiken R., Evett S. R., Colaizzi P. D., Marek G., Moorhead J. E., Baumhardt R. L., Brauer D., Kutikoff S., Lin X., Energy imbalance and evapotranspiration hysteresis under an advective environment: Evidence from lysimeter, eddy covariance, and energy balance modeling, Geophysical Research Letters, 2021, Vol. 48, No 1, ID e2020GL091203, DOI: 10.1029/2020GL091203.

Diaconu D., Wassenberg M., Spiecker H., Variability of European beech wood density as influenced by interactions between tree-ring growth and aspect, Forest Ecosystems, 2016, Vol. 3, ID 6, DOI: 10.1186/s40663-016-0065-8.

Diagnozy i kljuchi vozrastnyh sostojanij lesnyh rastenij. Derev’ja i kustarniki: metodicheskie razrabotki dlja studentov biologicheskih special’nostej. Diagnoses and keys of the age conditions of forest plants. Trees and shrubs: methodological developments for students of biological specialties, Part 1, O. V. Smirnova (ed.), Moscow: Izd-vo “Prometej” MGPI im. V. I. Lenina, 1989, 102 p.

Díaz‑Maroto I. J., Sylvain T., Analysis of physical properties of wood in three species of Galician oaks for the manufacture of wine barrels. Part I: Wood infradensity, Wood Research, 2016, Vol. 61, No 5, pp. 683–695.

Dickinson R. E., Modeling evapotranspiration for three‐dimensional global climate models, Climate Processes and Climate Sensitivity, 1984, Vol. 29. pp. 58–72, DOI: 10.1029/GM029p0058.

Didion M., Frey B., Rogiers N., Thürig E., Validating tree litter decomposition in the Yasso07 carbon model, Ecological Modelling, 2014, Vol. 291, pp. 58–68, DOI: 10.1016/j.ecolmodel.2014.07.028.

Dreyer E., Le Roux X., Montpied P., Daudet F. A., Masson F., Temperature response of leaf photosynthetic capacity in seedlings from seven temperate tree species, Tree Physiology, 2001, Vol. 21, No 4, pp. 223–232, DOI: 10.1093/treephys/21.4.223.

Dulamsuren C., Hauck M., Bader M., Osokhjargal D., Oyungerel S., Nyambayar S., Runge M., Leuschner C., Water relations and photosynthetic performance in Larix sibirica growing in the forest-steppe ecotone of northern Mongolia, Tree Physiology, 2008, Vol. 29, No 1, pp. 99–110, DOI: 10.1093/treephys/tpn008.

Dulamsuren C., Hauck M., Bader M., Oyungerel S., Osokhjargal D., Nyambayar S., Leuschner C., The different strategies of Pinus sylvestris and Larix sibirica to deal with summer drought in a northern Mongolian forest-steppe ecotone suggest a future superiority of pine in a warming climate, Canadian Journal of Forest Research, 2009, Vol. 39, No 12, pp. 2520–2528, DOI: 10.1139/X09-156.

Ďurkovič J., Čaňová I., Priwitzer T., Biroščíková M., Kapral P., Saniga M. Field assessment of photosynthetic characteristics in micropropagated and grafted wych elm (Ulmus glabra Huds.) trees, Plant Cell, Tissue and Organ Culture (PCTOC), 2010, Vol. 101, pp. 221–228, DOI: 10.1007/s11240-010-9680-1.

Dymov A. A., Bobkova K. S., Tuzhilkina V. V., Rakina D. A., Rastitel’nyj opad v korennom el’nike i listvenno-hvojnyh nasazhdenijah (Plant litter in the primary spruce forest and deciduous-coniferous plantations), Izvestija vysshih uchebnyh zavedenij. Lesnoj zhurnal, 2012, No 3, pp. 7–18.

Èermák J., Leaf distribution in large trees and stands of the floodplain forest in southern Moravia, Tree Physiology, 1998, Vol. 18, No 1, pp. 727–737, DOI: 10.1093/treephys/18.11.727.

Elkie P. C., Rempel R. S., Detecting scales of pattern in boreal forest landscapes, Forest Ecology and Management, 2001, Vol. 147, No 2–3, pp. 253–261, DOI: 10.1016/S0378-1127(00)00467-9.

Evnevich T. V., Savikovskij I. A., Raschjot prjamoj solnechnoj radiacii i kojefficienta prozrachnosti atmosfery (Calculation of direct solar radiation and atmospheric transparency coefficient), Meteorologija i gidrologija, 1989, No 5, pp. 106–109.

Evstigneev O. I., Ontogenetic scales of relation of trees to light (on the example of eastern European forests), Russian Journal of Ecosystem Ecology, 2018, Vol. 3, No 3, DOI: 10.21685/2500-0578-2018-3-3.

Evstigneev O. I., Korotkov V. N., Ontogenetic stages of trees: an overview, Russian Journal of Ecosystem Ecology, 2016, Vol. 1, No 2, DOI: 10.21685/2500-0578-2016-2-1.

Fajardo A., Goodburn J. M., Graham J., Spatial patterns of regeneration in managed uneven-aged ponderosa pine/Douglas-fir forests of Western Montana, USA, Forest Ecology and Management, 2006, Vol. 223, No 1, pp. 255–266, DOI: 10.1016/j.foreco.2005.11.022.

Falster D. S., Duursma R. A., Ishihara M. I., Barneche D. R., FitzJohn R. G., Vårhammar A., …, & York R. A., BAAD: a Biomass And Allometry Database for woody plants, Ecology, 2015, Vol. 96, No 5, pp. 1445–1445, DOI: 10.1890/14-1889.1.

Finsterwalder S., Der suldenferner, Zeitschrift des Deutschen und Österreichischen, Alpenvereins, 1887, Vol. 18, pp. 72–89.

Fjodorov S. F., Issledovanie jelementov vodnogo balansa v lesnoj zone Evropejskoj territorii SSSR (Investigation of the elements of the water balance in the forest zone of the European territory of the USSR), Leningrad: Gidrometeoizdat, 1977, 264 p.

Fomin S. V., Generalized Robinson-Schensted-Knuth correspondence, Journal of Mathematical Sciences, 1988, Vol. 41, No 2, pp. 979–991, DOI: 10.1007/BF01247093.

Forrester D. I., Bauhus J., A review of processes behind diversity — Productivity relationships in forest, Current Forestry Reports, 2016, Vol. 2, pp. 45–61, DOI: 10.1007/s40725-016-0031-2.

Forrester D. I., Tachauer I. H. H., Annighoefer P., Barbeito I., Pretzsch H., Ruiz‑Peinado R., Stark H., Vacchiano G., Zlatanov T., Chakraborty T., Saha S., Sileshi G. W., Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate, Forest Ecology and Management, 2017, Vol. 396, pp. 160–175, DOI: 10.1016/j.foreco.2017.04.011.

Frank A. B., Liebig M. A., Hanson J. D., Soil carbon dioxide fluxes in northern semiarid grasslands, Soil Biology and Biochemistry, 2002, Vol. 34, No 9, pp. 1235–1241, DOI: 10.1016/S0038-0717(02)00062-7.

Friedlingstein P., Fung I., Holland E., John J., Brasseur G., Erickson D., Schimel D., On the contribution of CO2 fertilization to the missing biospheric sink, Global Biogeochemical Cycles, 1995, Vol. 9, No 4, pp. 541–556, DOI: 10.1029/95GB02381.

Frolov P. V., Shanin V. N., Zubkova E. V., Bykhovets S. S., Grabarnik P. Y., CAMPUS‑S — The model of ground layer vegetation populations in forest ecosystems and their contribution to the dynamics of carbon and nitrogen. I. Problem formulation and description of the model, Ecological Modelling, 2020a, Vol. 431, ID 109184, DOI: 10.1016/j.ecolmodel.2020.109184.

Frolov P. V., Zubkova E. V., Shanin V. N., Bykhovets S. S., Mäkipää R., Salemaa M. CAMPUS‑S — The model of ground layer vegetation populations in forest ecosystems and their contribution to the dynamics of carbon and nitrogen, II. Parameterization, validation and simulation experiments, Ecological Modelling, 2020b, Vol. 431, ID 109183, DOI: 10.1016/j.ecolmodel.2020.109183.

Frolov P. V., Zubkova E. V., Komarov A. S., A cellular automata model for a community comprising two plant species of different growth forms, Biology Bulletin of the Russian Academy of Sciences, 2015, Vol. 42, pp. 279–286, DOI: 10.1134/S1062359015040044.

Frolov P., Shanin V., Zubkova E., Salemaa M., Mäkipää R., Grabarnik P., Predicting biomass of bilberry (Vaccinium myrtillus L.) using rank distribution and root-to-shoot ratio models, Plant Ecology, 2022, Vol. 223, No 2, pp. 131–140, DOI: 10.1007/s11258-021-01199-1.

Gale M. R., Grigal D. F., Vertical root distributions of northern tree species in relation to successional status, Canadian Journal of Forest Research, 1987, Vol. 17, No 8, pp. 829–834, DOI: 10.1139/x87-131.

Gardiner E. S., Löf M., O’Brien J. J., Stanturf J. A., Madsen P., Photosynthetic characteristics of Fagus sylvatica and Quercus robur established for stand conversion from Picea abies, Forest Ecology and Management, 2009, Vol. 258, No 5, pp. 868–878, DOI: 10.1016/j.foreco.2009.03.022.

Gebauer T., Water turnover in species-rich and species-poor deciduous forests: xylem sap flow and canopy transpiration: Dissertation, Biodiversity and Ecology Series B, Vol. 4. Göttingen: Georg-August-Universität, 2010, 146 p., DOI: 10.3249/webdoc-2324.

Gerling N. V., Tarasov S. I., Zakonomernosti assimiljacii dioksida ugleroda hvoej pihty sibirskoj v oblasti vysokih intensivnostej fotosinteticheski aktivnoj radiacii (Patterns of carbon dioxide assimilation in Siberian fir needles in the region of high intensities of photosynthetically active radiation), Biodiagnostika sostojanija prirodnyh i prirodno-tehnogennyh sistem: Materialy XVIII Vserossijskoj nauchno-prakticheskoj konferencii c mezhdunarodnym uchastiem (Biodiagnostics of the state of natural and natural-technogenic systems: Proceedings of the XVIII All-Russian scientific and practical conference with international participation), Kirov: Vjatskij gosudarstvennyj universitet, 2020, P. 111.

Geßler A., Keitel C., Kreuzwieser J., Matyssek R., Seiler W., Rennenberg H., Potential risks for European beech (Fagus sylvatica L.) in a changing climate, Trees, 2007, Vol. 21, No 1, pp. 1–11, DOI: 10.1007/s00468-006-0107-x.

Gessler A., Schneider S., von Sengbusch D., Weber P., Hanemann U., Huber C., Rothe A., Kreutzer K., Rennenberg H., Field and laboratory experiments on net uptake of nitrate and ammonium by the roots of spruce (Picea abies) and beech (Fagus sylvatica) trees, New Phytologist, 1998, Vol. 138, No 2, pp. 275–285, DOI: 10.1046/j.1469-8137.1998.00107.x.

Giagli K., Baar J., Fajstavr M., Gryc V., Vavrčík H., Tree-ring width and variation of wood density in Fraxinus excelsior L. and Quercus robur L. growing in floodplain forests, BioResources, 2018, Vol. 13, No 1, pp. 804–819, DOI: 10.15376/biores.13.1.804-819.

Giertych M. J., Karolewski P., Oleksyn J., Carbon allocation in seedlings of deciduous tree species depends on their shade tolerance, Acta Physiologiae Plantarum, 2015, Vol. 37, ID 216, DOI: 10.1007/s11738-015-1965-x.

Ginijatullin R. H., Kulagin A. J., Sostojanie kornevoj sistemy berjozy povisloj (Betula pendula Roth.) v uslovijah Sterlitamakskogo promyshlennogo centra (State of the root system of the silver birch (Betula pendula Roth.) in the conditions of the Sterlitamak industrial center), Vestnik Udmurtskogo universiteta. Serija Biologija. Nauki o Zemle”, 2012, No 4, pp. 21–28.

Goisser M., Geppert U., Rötzer T., Paya A., Huber A., Kerner R., Bauerle T., Pretzsch H., Pritsch K., Häberle K. H., Matyssek R., Grams T. E. E., Does belowground interaction with Fagus sylvatica increase drought susceptibility of photosynthesis and stem growth in Picea abies?, Forest Ecology and Management, 2016, Vol. 375, pp. 268–278, DOI: 10.1016/j.foreco.2016.05.032.

Goreaud F., Loreau M., Millier C., Spatial structure and the survival of an inferior competitor: a theoretical model of neighbourhood competition in plants, Ecological Modelling, 2002, Vol. 158, No 1–2, pp. 1–19, DOI: 10.1016/S0304-3800(02)00058-3.

Goulden M. L., Daube B. C., Fan S.‑M., Sutton D. J., Bazzaz A., Munger J. W., Wofsy S. C., Physiological response of a black spruce forest to weather, Journal of Geophysical Research: Atmospheres, 1997, Vol. 102, No D24, pp. 28987–28996, DOI: 10.1029/97JD01111.

Grabarnik P. Y., Chertov O. G., Chumachenko S. I., Shanin V. N., Khanina L. G., Bobrovskij M. V., Bykhovets S. S., Frolov P. V., Integracija imitacionnyh modelej dlja kompleksnoj ocenki jekosistemnyh uslug lesov: metodicheskie podhody (Integration of simulation models for the integrated assessment of forest ecosystem services: methodological approaches), Matematicheskaja biologija i bioinformatika, 2019a, Vol. 14, No 2, pp. 488–499, DOI: 10.17537/2019.14.488.

Grabarnik P. Y., Shanin V. N., Chertov O. G., Priputina I. V., Bykhovets S. S., Petropavlovskij B. S., Frolov P. V., Zubkova E. V., Shashkov M. P., Frolova G. G., Modelirovanie dinamiki lesnyh jekosistem kak instrument prognozirovanija i upravlenija lesami (Modeling the dynamics of forest ecosystems as a tool for forecasting and forest management), Lesovedenie, 2019b, No 6, pp. 488–500, DOI: 10.1134/S0024114819030033.

Grime J. P., Plant strategies, vegetation processes, and ecosystem properties. 2nd edition. John Wiley & Son, 2002, 417 p.

Grossi G., Lendvai A., Peretti G., Ranzi R., Snow precipitation measured by gauges: Systematic error estimation and data series correction in the central Italian Alps, Water, 2017, Vol. 9, No 7, ID 461, DOI: 10.3390/w9070461.

Gryc V., Vavrčík H., Gomola Š., Selected properties of European beech (Fagus sylvatica L.), Journal of Forest Science, 2008, Vol. 54, No 9, pp. 418–425, DOI: 10.17221/59/2008-JFS.

Grygoruk D., Root vitality of Fagus sylvatica L., Quercus petraea Liebl. and Acer pseudoplatanus L. in mature mixed forest stand, Folia Forestalia Polonica. Series A — Forestry, 2016, Vol. 58, No 2, pp. 55–61, DOI: 10.1515/ffp-2016-0006.

Gspaltl M., Bauerle W., Binkley D., Sterba H., Leaf area and light use efficiency patterns of Norway spruce under different thinning regimes and age classes, Forest Ecology and Management, 2013, Vol. 288, pp. 49–59, DOI: 10.1016/j.foreco.2011.11.044.

Guerrero‑Ramírez N. R., Mommer L., Freschet G. T., Iversen C. M., McCormack M. L., …, & Weigelt A., Global root traits (GRooT) database, Global Ecology and Biogeography, 2021, Vol. 30, No 1, pp. 25–37, DOI: 10.1111/geb.13179.

Gulbe J. I., Ermolova L. S., Rozhdestvenskij S. G., Utkin A. I., Celniker J. L., Vertikal’noe raspredelenie poverhnosti list’ev i svetovoj rezhim v listvennyh molodnjakah juzhnoj tajgi (Vertical distribution of leaf surface and light regime in deciduous young forests of the southern taiga), Lesovedenie, 1983, No 2, pp. 21–29.

Gupta A. K., Beta distribution / International encyclopedia of statistical science. Lovric M. (ed.). Springer, 2011, pp. 144–145, DOI: 10.1007/978-3-642-04898-2_144.

Haefner J. W., Poole G. C., Dunn P. V., Decker R. T., Edge effects in computer models of spatial competition, Ecological Modelling, 1991, Vol. 56, pp. 221–244, DOI: 10.1016/0304-3800(91)90201-B.

Hagemeier M., Leuschner C., Functional crown architecture of five temperate broadleaf tree species: Vertical gradients in leaf morphology, leaf angle, and leaf area density, Forests, 2019a, Vol. 10, No 3, ID 265, DOI: 10.3390/f10030265.

Hagemeier M., Leuschner C., Leaf and crown optical properties of five early-, mid- and late-successional temperate tree species and their relation to sapling light demand, Forests, 2019b, Vol. 10, No 10, ID 925, DOI: 10.3390/f10100925.

Hamada J., Pétrissans A., Mothe F., Ruelle J., Pétrissans M., Gérardin P., Variations in the natural density of European oak wood affect thermal degradation during thermal modification, Annals of Forest Science, 2016, Vol. 73, No 2, pp. 277–286, DOI: 10.1007/s13595-015-0499-0.

Hanson P. J., Todd D. E., Amthor J. S., A six-year study of sapling and large-tree growth and mortality responses to natural and induced variability in precipitation and throughfall, Tree Physiology, 2001, Vol. 21, No 6, pp. 345–358, DOI: 10.1093/treephys/21.6.345.

Hansson K., Helmisaari H.‑S., Sah S. P., Lange H., Fine root production and turnover of tree and understorey vegetation in Scots pine, silver birch and Norway spruce stands in SW Sweden, Forest Ecology and Management, 2013, Vol. 309, pp. 58–65, DOI: 10.1016/j.foreco.2013.01.022.

Hansson K., Kleja D. B., Kalbitz K., Larsson H., Amounts of carbon mineralised and leached as DOC during decomposition of Norway spruce needles and fine roots, Soil Biology and Biochemistry, 2010, Vol. 42, No 2, pp. 178–185, DOI: 10.1016/j.soilbio.2009.10.013.

Hättenschwiler S., Gasser P., Soil animals alter plant litter diversity effects on decomposition, Proceedings of the National Academy of Sciences, 2005, Vol. 102, No 5, pp. 1519–1524, DOI: 10.1073/pnas.0404977102.

Havron’in A. V., Kretinin V. M., Dubovskaja L. V., Biologicheskaja akkumuljacija pitatel’nyh jelementov v polezashhitnyh lesnyh polosah na obyknovennom chernozeme (Biological accumulation of nutrients in field-protective forest belts on ordinary chernozem), Voprosy lesnoj biogeocenologii, jekologii i ohrany prirody v stepnoj zone. Mezhvuzovskij sbornik. Issue 2. Kujbyshev: Kujbyshevskij gosudarstvennyj universitet, 1977, pp. 42–49.

Helmisaari H.‑S., Derome J., Nöjd P., Kukkola M., Fine root biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands, Tree Physiology, 2007, Vol. 27, No 10, pp. 1493–1504, DOI: 10.1093/treephys/27.10.1493.

Helmisaari H.‑S., Makkonen K., Kellomäki S., Valtonen E., Mälkönen E., Below- and above-ground biomass, production and nitrogen use in Scots pine stands in eastern Finland, Forest Ecology and Management, 2002, Vol. 165, No 1–3, pp. 317–326, DOI: 10.1016/S0378-1127(01)00648-X.

Helmisaari H.‑S., Sah S., Aro L., Fine roots on intensive forest ecosystem monitoring plots FIP4, FIP10 and FIP11 on Olkiluoto island in 2008, Working Report 2009-127. Finnish Forest Research Institute, 2009, 33 p.

Heräjärvi H., Junkkonen R., Wood density and growth rate of European and hybrid aspen in southern Finland, Baltic Forestry, 2006, Vol. 12, No 1, pp. 2–8.

Herben T., Wildová R., Community-level effects of plant traits in a grassland community examined by multispecies model of clonal plant growth, Ecological Modelling, 2012, Vol. 234, pp. 60–69, DOI: 10.1016/j.ecolmodel.2011.06.012.

Hertel C., Leuchner M., Rötzer T., Menzel A., Assessing stand structure of beech and spruce from measured spectral radiation properties and modeled leaf biomass parameters, Agricultural and Forest Meteorology, 2012, Vol. 165, pp. 82–91, DOI: 10.1016/j.agrformet.2012.06.008.

Hinckley T. M., Lassoie J. P., Running S. W., Temporal and spatial variations in the water status of forest trees, Forest Science, 1978, Vol. 24, Suppl. 1, pp. a0001–z0001.

Hirvelä H., Härkönen K., Lempinen R., Salminen O., MELA2016 Reference Manual [in:] Natural resources and bioeconomy studies 2017/7, Natural Resources Institute Finland, Helsinki, 2017, 547 p.

Hobbie S. E., Oleksyn J., Eissenstat D. M., Reich P. B., Fine root decomposition rates do not mirror those of leaf litter among temperate tree species, Oecologia, 2010, Vol. 162, No 2, pp. 505–513, DOI: 10.1007/s00442-009-1479-6.

Horaskina Y. S., Komarov A. S., Bezrukova M. G., Zhijanski M. K., Modelirovanie dinamiki kal’cija v organicheskih gorizontah pochvy (Modeling of calcium dynamics in organic soil horizons), Komp’juternye issledovanija i modelirovanie, 2010, Vol. 2, No 1, pp. 103–110, DOI: 10.20537/2076-7633-2010-2-1-103-110.

Hristopulos D. T., Gaussian random fields [in:] Random fields for spatial data modeling. Advances in geographic information science, Springer, 2020, pp. 245–307, DOI: 10.1007/978-94-024-1918-4_6

Iivonen S., Kaakinen S., Jolkkonen A., Vapaavuori E., Linder S., Influence of long-term nutrient optimization on biomass, carbon, and nitrogen acquisition and allocation in Norway spruce, Canadian Journal of Forest Research, 2006, Vol. 36, No 6, pp. 1563–1571, DOI: 10.1139/x06-035.

IPCC: Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth assessment report of the Intergovernmental Panel on Climate Change / Stocker T. F., Qin D., Plattner G.‑K., Tignor M., Allen S. K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P. M. (eds.). Cambridge: Cambridge University Press, 2013, 1535 p.

Isaev A. S., Ovchinnikova T. M., Suhovol’skij V. G., Raspredelenie fitomassy derev’ev i nasazhdenij po frakcijam: model’ konkurencii (Distribution of the phytomass of trees and plantations by fractions: a model of competition), Problemy jekologicheskogo monitoringa i modelirovanija jekosistem, 2007, Vol. 1, pp. 232–250.

Jacovides C. P., Boland J., Asimakopoulos D. N., Kaltsounides N. A., Comparing diffuse radiation models with one predictor for partitioning incident PAR radiation into its diffuse component in the eastern Mediterranean basin, Renewable Energy, 2010, Vol. 35, No 8, pp. 1820–1827, DOI: 10.1016/j.renene.2009.11.015.

Jagodzinski A. M., Ziółkowski J., Warnkowska A., Prais H., Tree age effects on fine root biomass and morphology over chronosequences of Fagus sylvatica, Quercus robur and Alnus glutinosa stands, PLoS ONE, 2016, Vol. 11, No 2, ID e0148668, DOI: 10.1371/journal.pone.0148668.

Jaloviar P., Kucbel S., Vencurik J., Kýpeťová M., Parobeková Z., Pittner J., Saniga M., Sedmáková D., Underplanted silver fir and common beech cause changes in root stratification and morphology in mature spruce stands, Plant Root, 2018, Vol. 12, pp. 21–30, DOI: 10.3117/plantroot.12.21.

Jarmishko V. T., Vertikal’no-frakcionnaja struktura nadzemnoj fitomassy Pinus sylvestris L. na severnom predele rasprostranenija v uslovijah atmosfernogo zagrjaznenija (Vertical-fractional structure of the aboveground phytomass of Pinus sylvestris L. at the northern limit of distribution under conditions of atmospheric pollution), Rastitel’nye resursy, 1999, Vol. 35, No 1, pp. 3–12.

Jarvis P. G., The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field, Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 1976, Vol. 273, No 927, pp. 593–610, DOI: 10.1098/rstb.1976.0035.

Jia Y., Yu G., Gao Y., He N., Wang Q., Jiao C., Zuo Y., Global inorganic nitrogen dry deposition inferred from ground- and space-based measurements, Nature Scientific Reports, 2016, Vol. 6, ID 19810, DOI: 10.1038/srep19810.

Jiao W., Wang W., Peng C., Lei X., Ruan H., Yang Y., Grabarnik P., Shanin V., Improving a process-based model to simulate forest carbon allocation under varied stand density, Forests, 2022, Vol. 13, No 8, ID 1212, DOI: 10.3390/f13081212.

Jucker T., Fischer F. J., Chave J., Coomes D. A., Caspersen J., …, & Zavala M. A., Tallo: a global tree allometry and crown architecture database, Global Change Biology, 2022, Vol. 28, No 17, pp. 5254–5268, DOI: 10.1111/gcb.16302.

Juutinen A., Ahtikoski A., Mäkipää R., Shanin V., Effect of harvest interval and intensity on the profitability of uneven-aged management of Norway spruce stands, Forestry: An International Journal of Forest Research, 2018, Vol. 91, No 5, pp. 589–602, DOI: 10.1093/forestry/cpy018.

Jyske T., Mäkinen H., Saranpää P., Wood density within Norway spruce stems, Silva Fennica, 2008, Vol. 42, No 3, pp. 439–455, DOI: 10.14214/sf.248.

Kajimoto T., Matsuura Y., Sofronov M. A., Volokitina A. V., Mori S., Osawa A., Abaimov A. P., Above- and belowground biomass and net primary productivity of a Larix gmelinii stand near Tura, central Siberia, Tree Physiology, 1999, Vol. 19, No 12, pp. 815–822, DOI: 10.1093/treephys/19.12.815.

Kalela E. K., Männiköiden ja kuusikoiden juurisuhteista I (On the horizontal roots in pine and spruce stand I), Silva Fennica (Acta Forestalia Fennica), 1949, Vol. 57, No 2, ID 7398, DOI: 10.14214/aff.7398.

Kalela E. K., Mäntysiemenpuiden ja -puustojen juurisuhteista, Silva Fennica (Acta Forestalia Fennica), 1954, Vol. 61, No 28, ID 7440, DOI: 10.14214/aff.7440.

Kalliokoski T., Root system traits of Norway spruce, Scots pine, and silver birch in mixed boreal forests: an analysis of root architecture, morphology, and anatomy: Dissertation. Dissertationes Forestales, 2011, Vol. 121, 67 p.

Kalliokoski T., Nygren P., Sievänen R., Coarse root architecture of three boreal tree species growing in mixed stands, Silva Fennica, 2008, Vol. 42, No 2, pp. 189–210, DOI: 10.14214/sf.252.

Kalliokoski T., Pennanen T., Nygren P., Sievänen R., Helmisaari H.‑S., Belowground interspecific competition in mixed boreal forests: fine root and ectomycorrhiza characteristics along stand developmental stage and soil fertility gradients, Plant and Soil, 2010a, Vol. 330, pp. 73–89, DOI: 10.1007/s11104-009-0177-9.

Kalliokoski T., Sievänen R., Nygren P., Tree roots as self-similar branching structures: axis differentiation and segment tapering in coarse roots of three boreal forest tree species, Trees, 2010b, Vol. 24, pp. 219–236, DOI: 10.1007/s00468-009-0393-1.

Kang S., Kim S., Oh S., Lee D., Predicting spatial and temporal patterns of soil temperature based on topography, surface cover and air temperature, Forest Ecology and Management, 2000, Vol. 136, No 1–3, pp. 173–184, DOI: 10.1016/S0378-1127(99)00290-X.

Kaplina N. F., Kulakova N. J., Fitomassa i zapasy ugleroda i azota v kontrastnyh po produktivnosti nagornyh dubravah juzhnoj lesostepi (Phytomass and stocks of carbon and nitrogen in upland oak forests with contrasting productivity in the southern forest-steppe), Aridnye jekosistemy, 2021, Vol. 27, No 1 (86), pp. 35–42, DOI: 10.24411/1993-3916-2021-10135.

Kärki T., Variation of wood density and shrinkage in European aspen (Populus tremula), Holz als Roh- und Werkstoff, 2001, Vol. 59, No 1–2, pp. 79–84, DOI: 10.1007/s001070050479.

Karmanova I. V., Sudnicina T. N., Il’ina N. A., Prostranstvennaja struktura slozhnyh sosnjakov (Spatial structure of complex pine forests), Moscow: Nauka, 1987, 100 p.

Karpachevskij L. O., Les i lesnye pochvy (Forest and forest soils), Moscow: Lesn. prom-st’, 1981, 264 p.

Karpechko Y. V., Ocenka prostranstvennoj i vremennoj neodnorodnosti zaderzhanija zhidkih osadkov pologom lesa (Estimation of spatial and temporal heterogeneity of liquid precipitation retention by the forest canopy), Lesovedenie, 1997, No 4, pp. 64–70.

Kätterer T., Reichstein M., Andrén O., Lomander A., Temperature dependence of organic matter decomposition: a critical review using literature data analyzed with different models, Biology and fertility of soil, 1998, Vol. 27, No 3, pp. 258–262, DOI: 10.1007/s003740050430.

Kazda M., Salzer J., Reiter I., Photosynthetic capacity in relation to nitrogen in the canopy of a Quercus robur, Fraxinus angustifolia and Tilia cordata flood plain forest, Tree Physiology, 2000, Vol. 20, No 15, pp. 1029–1037, DOI: 10.1093/treephys/20.15.1029.

Kazimirov N. I., Morozova R. M., Biologicheskij krugovorot veshhestv v el’nikah Karelii (Biological circulation of substances in the spruce forests of Karelia), Leningrad: Nauka, 1973, 175 p.

Kellomäki S., Väisänen H., Strandman H., FinnFor: a model for calculating the response of the boreal forest ecosystem to climate changes / Research Note No 6. Faculty of Forestry, University of Joensuu, Finland, 1993, 120 p.

Kelty M. J., The role of species mixtures in plantation forestry, Forest Ecology and Management, 2006, Vol. 233, No 2–3, pp. 195–204, DOI: 10.1016/j.foreco.2006.05.011.

Kharuk V. I., Im S. T., Petrov I. A., Dvinskaya M. L., Fedotova E. V., Ranson K. J., Fir decline and mortality in the southern Siberian Mountains, Regional Environmental Change, 2017, Vol. 17, No 3, pp. 803–812, DOI: 10.1007/s10113-016-1073-5.

Kiaei M., Samariha A., Wood density and shrinkage of Ulmus glabra in northwestern of Iran, American-Eurasian Journal of Agricultural & Environmental Sciences, 2011, Vol. 11, No 2, рр. 257–260.

Klassifikacija i diagnostika pochv Rossii (Classification and diagnostics of Russian soils) G. V. Dobrovolskij (ed.), Smolensk: Ojkumena, 2004, 341 p.

Kloeppel B. D., Abrams M. D., Ecophysiological attributes of the native Acer saccharum and the exotic Acer platanoides in urban oak forests in Pennsylvania, USA, Tree Physiology, 1995, Vol. 15, No 11, pp. 739–746, DOI: 10.1093/treephys/15.11.739.

Köcher P., Gebauer T., Horna V., Leuschner C., Leaf water status and stem xylem flux in relation to soil drought in five temperate broad-leaved tree species with contrasting water use strategies, Annals of Forest Science, 2009, Vol. 66, No 1, ID 101, DOI: 10.1051/forest/2008076.

Kolari P., Pumpanen J., Kulmala L., Ilvesniemi H., Nikinmaa E., Grönholm T., Hari P., Forest floor vegetation plays an important role in photosynthetic production of boreal forests, Forest Ecology and Management, 2006, Vol. 221, No 1–3, pp. 241–248, DOI: 10.1016/j.foreco.2005.10.021.

Kolobov A. N., Modelirovanie prostranstvenno-vremennoj dinamiki drevesnyh soobshhestv Diss. kand. fiz.-mat. nauk (Modeling the spatio-temporal dynamics of tree communities, Candidate’s phys. and math. sci. thesis), Birobidzhan: Institut kompleksnogo analiza regional’nyh problem DVO RAN, 2013, 133 p.

Kolobov A. N., Frisman E. Y., Evaluate the initial spatial structure and heterogeneity of the composition for spruce and larch stands on real data self-thinning of even-aged stands, Ecological Complexity, 2018, Vol. 34, pp. 89–99, DOI: 10.1016/j.ecocom.2017.09.005.

Kolobov A. N., Lonkina E. S., Frisman E. Y., Modelirovanie i analiz gorizontal’noj struktury smeshannyh drevostoev (na primere probnyh ploshhadej zapovednika “Bastak” v Srednem Priamur’e (Modeling and analysis of the horizontal structure of mixed forest stands (on the example of trial plots of the Bastak nature reserve in the Middle Amur region), Sibirskij lesnoj zhurnal, 2015, No 3, pp. 45–56, DOI: 10.15372/SJFS20150305.

Komarov A. S., Prostranstvennye individual’no-orientirovannye modeli lesnyh jekosistem (Spatial individually-oriented models of forest ecosystems), Lesovedenie, 2010, No 2, pp. 60–68.

Komarov A. S., Prostye struktury rastitel’nogo pokrova, ustojchivye k vneshnim narushenijam (Simple canopy structures resistant to external disturbances) [in:] Vzaimodejstvujushhie Markovskie processy i ih primenenie k matematicheskomu modelirovaniju biologicheskih system (Interacting Markov processes and their application to mathematical modeling of biological systems), Puschino: ONTI NCBI AN SSSR, 1982, pp. 136–143.

Komarov A. S., Chertov O. G., Zudin S. L., Nadporozhskaya M. A., Mikhailov A. V., Bykhovets S. S., Zudina E. V., Zoubkova E. V., EFIMOD 2 — the system of simulation models of forest growth and elements cycles in forest ecosystems, Ecological Modelling, 2003a, Vol. 170, No 2–3, pp. 373–392, DOI: 10.1016/S0304-3800(03)00240-0.

Komarov A. S., Ginzhul L. K., Shanin V. N., Bykhovets S. S., Bobkova K. S., Kuznetsov M. A., Manov A. V., Osipov A. F., Pattern of biomass partitioning into fractions of boreal trees, Biology Bulletin of the Russian Academy of Sciences, 2017b, Vol. 44, No 6, pp. 626–633, DOI: 10.1134/S1062359017060061.

Komarov A. S., Khoraskina Y. S., Bykhovets S. S., Bezrukova M. G., Modelling of soil organic matter and elements of soil nutrition dynamics in mineral and organic forest soils: the ROMUL model expansion, Procedia Environmental Sciences, 2012, Vol. 13, pp. 525–534, DOI: 10.1016/j.proenv.2012.01.043.

Komarov A. S., Palenova M. M., Smirnova O. V., The concept of discrete description of plant ontogenesis and cellular automata models of plant populations, Ecological Modeling, 2003b, Vol. 170, No 2, pp. 427–439, DOI: 10.1016/S0304-3800(03)00243-6.

Komarov A. S., Shanin V. N., Comparative analysis of the influence of climate change and nitrogen deposition on carbon sequestration in forest ecosystems in European Russia: simulation modelling approach, Biogeosciences, 2012, Vol. 9, No 11, pp. 4757–4770, DOI: 10.5194/bg-9-4757–2012.

Komarov A., Chertov O., Bykhovets S., Shaw C., Nadporozhskaya M., Frolov P., Shashkov M., Shanin V., Grabarnik P., Priputina I., Zubkova E., Romul_Hum model of soil organic matter formation coupled with soil biota activity. I. Problem formulation, model description, and testing, Ecological Modelling, 2017a, Vol. 345, pp. 113–124, DOI: 10.1016/j.ecolmodel.2016.08.007.

Korennye elovye lesa Severa: bioraznoobrazie, struktura, funkcii (Indigenous spruce forests of the North: biodiversity, structure, functions), K. S. Bobkova, J. P. Galenko (eds.), Saint Petersburg: Nauka, 2006, 337 p.

Korotkov V. N., Novaja paradigma v lesnoj jekologii (A new paradigm in forest ecology), Biologicheskie nauki, 1991, No 8, pp. 7–19.

Korzuhin M. D., Celniker J. L., Analiz rasprostranenija i chistoj pervichnoj produkcii chetyrjoh lesnyh porod derev’ev v Rossii s pomoshh’ju jekofiziologicheskoj modeli (Analysis of distribution and net primary production of four forest tree species in Russia using an ecophysiological model), Problemy jekologicheskogo monitoringa i modelirovanija jekosistem, 2009, Vol. 22, pp. 92–123.

Korzuhin M. D., Celniker J. L., Model’nyj analiz sovremennyh arealov lesnyh drevesnyh porod na territorii Rossii i ih variacij pri vozmozhnyh izmenenijah klimata (Model analysis of modern areas of forest tree species on the territory of Russia and their variations under possible climate changes), Problemy jekologicheskogo monitoringa i modelirovanija jekosistem, 2010, Vol. 23, pp. 249–268.

Korzuhin M. D., Celniker J. L., Semenov S. M., Jekofiziologicheskaja model’ pervichnoj produktivnosti drevesnyh rastenij i ocenki klimaticheskih predelov ih proizrastanija (Ecophysiological model of primary productivity of woody plants and estimation of climatic limits of their growth), Meteorologija i gidrologija, 2008, No 12, pp. 56–69.

Korzuhin M. D., Vygodskaja N. N., Miljukova I. M., Tatarinov F. A., Celniker J. L., Primenenie objedinennoj modeli fotosinteza i ust’ichnoj provodimosti k analizu assimiljacii ugleroda el’ju i listvennicej v lesah Rossii (Application of the combined model of photosynthesis and stomatal conductance to the analysis of carbon assimilation by spruce and larch in Russian forests), Fiziologija rastenij, 2004, Vol. 51, No 3, pp. 341–354.

Korzukhin M. D., Ter‑Mikaelian M. T., An individual-tree-based model of competition for light, Ecological Modelling, 1995, Vol. 79, No 1–3, pp. 221–229, DOI: 10.1016/0304-3800(94)00039-K.

Koshurnikova N., Makhnykina A., Garmash A., Zlenko L., Verkhovets S., Production of phytomass carbon in the dark coniferous forest of the Western Siberia, 18th International Multidisciplinary Scientific Geoconference SGEM 2018 (28 July 2018, Albena, Bulgaria). Conference Proceedings, Vol. 18, pp. 885–892, DOI: 10.5593/sgem2018/3.2.

Kuehne C., Kublin E., Pyttel P., Bauhus J., Growth and form of Quercus robur and Fraxinus excelsior respond distinctly different to initial growing space: Results from 24‑year-old Nelder experiments, Journal of Forestry Research, 2013, Vol. 24, pp. 1–14, DOI: 10.1007/s11676-013-0320-6.

Kükenbrink D., Gardi O., Morsdorf F., Thürig E., Schellenberger A., Mathys L., Above-ground biomass references for urban trees from terrestrial laser scanning data, Annals of Botany, 2021, Vol. 128, No 6, pp. 709–724, DOI: 10.1093/aob/mcab002.

Kulha N., Pasanen L., Holmström L., De Grandpré L., Kuuluvainen T., Aakala T., At what scales and why does forest structure vary in naturally dynamic boreal forests? An analysis of forest landscapes on two continents, Ecosystems, 2018, Vol. 22. pp. 709–724, DOI: 10.1007/s10021-018-0297-2.

Kull O., Koppel A., Net photosynthetic response to light intensity of shoots from different crown positions and age in Picea abies (L.) Karst., Scandinavian Journal of Forest Research, 1987, Vol. 2, No 1–4, pp. 157–166, DOI: 10.1080/02827588709382454.

Kutikoff S., Lin X., Evett S. R., Gowda P., Brauer D., Moorhead J., Marek G., Colaizzi P., Aiken R., Xu L., Owensby C., Water vapor density and turbulent fluxes from three generations of infrared gas analyzers, Atmospheric Measurement Techniques, 2021, Vol. 14, No 2, pp. 1253–1266, DOI: 10.5194/amt-14-1253-2021.

Kuuluvainen T., Hokkanen T. J., Järvinen E., Pukkala T., Factors related to seedling growth in a boreal Scots pine stand: a spatial analysis of a vegetation-soil system, Canadian Journal of Forest Research, 1993, Vol. 23, No 10, pp. 2101–2109, DOI: 10.1139/x93-262.

Kuuluvainen T., Syrjänen K., Kalliola R., Structure of a pristine Picea abies forest in Northeastern Europe, Journal of Vegetation Science, 1998, Vol. 9, No 4, pp. 563–574, DOI: 10.2307/3237272.

Kuzyakova I. F., Kuzyakov Y. V., Thomas E., Wirkung des Mikroreliefs auf die räumliche Variabilität des Kohlenstoffgehaltes eines Podzoluvisols in einem Dauerdüngungsversuch (Effect of microrelief on the spatial variability of carbon content of a Podzoluvisol in a long term field trial), Zeitschrift fur Pflanzenernahrung und Bodenkunde, 1997, Vol. 160, No 5, pp. 555–561, DOI: 10.1002/jpln.19971600506.

Laitakari E., Koivun juuristo (The root system of birch [Betula verrucosa and odorata]), Silva Fennica (Acta Forestalia Fennica), 1934, Vol. 41, No 2, ID 7315, DOI: 10.14214/aff.7315.

Laitakari E., Männyn juuristo. Morfologinen tutkimus (The root system of pine [Pinus sylvestris]: a morphological investigation), Silva Fennica (Acta Forestalia Fennica), 1927, Vol. 33, No 1, ID 7210, DOI: 10.14214/aff.7210.

Lal R., Suleimenov M., Stewart B. A., Hansen D. O., Doraiswamy P., Climate change and terrestrial carbon sequestration in Central Asia. CRC Press, 2007, 512 p., DOI: 10.1201/9780203932698.

Landsberg J. J., Waring R. H., A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning, Forest Ecology and Management, 1997, Vol. 95, No 3, pp. 209–228, DOI: 10.1016/S0378-1127(97)00026-1.

Lasch‑Born P., Suckow F., Reyer C. P. O., Gutsch M., Kollas C., Badeck F.-W., Bugmann H. K. M., Grote R., Fürstenau F., Lindner M., Schaber J., Description and evaluation of the process-based forest model 4C v2.2 at four European forest sites, Geoscientific Model Development, 2020, Vol. 13, No 11, pp. 5311–5343, DOI: 10.5194/gmd-13-5311-2020.

Lashhinskij N. N., Struktura i dinamika sosnovyh lesov Nizhnego Priangar’ja (Structure and dynamics of pine forests in the Lower Angara region), Moscow: Nauka, 1981, 272 p.

Law B. E., Baldocchi D. D., Anthoni P. M., Below-canopy and soil CO2 fluxes in a ponderosa pine forest, Agricultural and Forest Meteorology, 1999, Vol. 94, No 3–4, pp. 171–188, DOI: 10.1016/S0168-1923(99)00019-2.

Le Goff N., Granier A., Ottorini J.‑M., Peiffer M., Biomass increment and carbon balance of ash (Fraxinus excelsior) trees in an experimental stand in northeastern France, Annals of Forest Science, 2004, Vol. 61, No 6, pp. 577–588, DOI: 10.1051/forest:2004053.

Lebedev E. V., Biologicheskaja produktivnost’ duba chereshchatogo na urovne organizma v ontogeneze v Evropejskoj chasti Rossii (Biological productivity of English oak at the level of an organism in ontogeny in the European part of Russia), Lesnoj vestnik, 2013, No 3, pp. 28–33.

Lebedev E. V., Produktivnost’ berjozy beloj na urovne organizma v ontogeneze v evropejskoj chasti Rossii (White birch productivity at the organism level in ontogeny in the European part of Russia), Izvestija Orenburgskogo gosudarstvennogo agrarnogo universiteta, 2012a, No 4 (36), pp. 18–22.

Lebedev E. V., Produktivnost’ fotosinteza i mineral’noe pitanie lipy melkolistnoj na urovne organizma v ontogeneze v srednem Povolzh’e (The productivity of photosynthesis and mineral nutrition of small-leaved linden at the level of the organism in ontogenesis in the middle Volga region), Vestnik RUDN, serija Jekologija i bezopasnost’ zhiznedejatel’nosti, 2012b, No 4, pp. 5–10.

Lebedev S. V., Chumachenko S. I., Poderevnaja model’ dinamiki mnogovidovogo raznovozrastnogo nasazhdenija (PIXTA) (Tree-by-tree model of the dynamics of a multi-species plant of different ages (PIXTA)), Vestnik Moskovskogo gosudarstvennogo universiteta lesa. Lesnoj vestnik, 2011, No 7 (83), pp. 71–78.

Lebedev V. M., Lebedev E. V., Morfologicheskie, funkcional’nye i fiziologicheskie osobennosti aktivnoj chasti kornevoj sistemy lesoobrazujushhih porod Volgo-vjatskogo regiona) Morphological, functional and physiological features of the active part of the root system of forest-forming species of the Volga-Vyatka region), Agrohimija, 2011, No 4, pp. 38–44.

Lebedev V. M., Lebedev E. V., Vzaimosvjaz’ biologicheskoj produktivnosti i poglotitel’noj dejatel’nosti kornej hvojnyh porod v ontogeneze v zone juzhnoj tajgi Rossii (Interrelation of biological productivity and absorptive activity of coniferous roots in ontogeny in the southern taiga zone of Russia), Agrohimija, 2012, No 8, pp. 9–17.

Lehmann J., Kleber M., The contentious nature of soil organic matter, Nature, 2015, Vol. 528, pp. 60–68, DOI: 10.1038/nature16069.

Lemoine D., Peltier J.‑P., Marigo G., Comparative studies of the water relations and the hydraulic characteristics in Fraxinus excelsior, Acer pseudoplatanus and A. opalus trees under soil water contrasted conditions, Annals of Forest Science, 2001, Vol. 58, No 7, pp. 723–731, DOI: 10.1051/forest:2001159.

Leuschner C., Hagemeier M., The economy of canopy space occupation and shade production in early- to late-successional temperate tree species and their relation to productivity, Forests, 2020, Vol. 11, No 3, ID 317, DOI: 10.3390/f11030317.

Leuschner C., Hertel D., Schmid I., Koch O, Muhs A., Hölscher D., Stand fine root biomass and fine root morphology in old-growth beech forests as a function of precipitation and soil fertility, Plant and Soil, 2004, Vol. 258, pp. 43–56, DOI: 10.1023/B:PLSO.0000016508.20173.80.

Levin S. A., The problem of pattern and scale in ecology: the Robert H. MacArthur award lecture, Ecology, 1992, Vol. 73, No 6, pp. 1943–1967, DOI: 10.2307/1941447.

Lexer M. J., Hönninger K., A modified 3D‑patch model for spatially explicit simulation of vegetation composition in heterogeneous landscapes, Forest Ecology and Management, 2001, Vol. 144, No 1–3, pp. 43–65, DOI: 10.1016/S0378-1127(00)00386-8.

Liang W. L., Uchida T., Effects of topography and soil depth on saturated-zone dynamics in steep hillslopes explored using the three-dimensional Richards’ equation, Journal of Hydrology, 2014, Vol. 510, pp. 124–136, DOI: 10.1016/j.jhydrol.2013.12.029.

Liepiņš J., Ivanovs J., Lazdiņš A., Jansons J., Liepiņš K., Mapping of basic density within European aspen stems in Latvia, Silva Fennica, 2017, Vol. 51, No 5, ID 7798, DOI: 10.14214/sf.7798.

Lintunen A., Crown architecture and its role in species interactions in mixed boreal forests: Dissertation. Dissertationes Forestales, Vol. 165, University of Helsinki, Faculty of Agriculture and Forestry, Department of Forest Sciences, 2013, 55 p.

Lintunen A., Kaitaniemi P., Responses of crown architecture in Betula pendula to competition are dependent on the species of neighbouring trees, Trees, 2010, Vol. 24. pp. 411–424, DOI: 10.1007/s00468-010-0409-x.

Lintunen A., Sievänen R., Kaitaniemi P., Perttunen J., Models of 3D crown structure for Scots pine (Pinus sylvestris) and silver birch (Betula pendula) grown in mixed forest, Canadian Journal of Forest Research, 2011, Vol. 41, No 9, pp. 1779–1794, DOI: 10.1139/x11-092.

Loreau M., Separating sampling and other effects in biodiversity experiments, Oikos, 1998, Vol. 82, No 3, pp. 600–602, DOI: 10.2307/3546381.

Lozinov G. L., Osobennosti prostranstvennogo raspredelenija podzemnyh chastej rastenij v lesnyh biogeocenozah Podmoskov’ja (Features of the spatial distribution of underground parts of plants in forest biogeocenoses of the Moscow region), Lesovedenie, 1980, No 1, pp. 58–63.

Lukina N. V., Zapas fitomassy drevostoev sosnjakov lishajnikovyh na severnom predele ih rasprostranenija (Stock of phytomass of lichen pine stands at the northern limit of their distribution), Lesovedenie, 1996, No 3, pp. 28–37.

Lukina N. V., Nikonov V. V., Rajtio H., Himicheskij sostav hvoi sosny na Kol’skom poluostrove (The chemical composition of pine needles on the Kola Peninsula), Lesovedenie, 1994, No 6, pp. 10–21.

Lukina N. V., Orlova M. A., Tikhonova E. V., Tebenkova D. N., Kazakova A. I., Gornov A. V., Smirnov V. E., Knyazeva S. V., Bakhmet O. N., Kryshen A. M., Shashkov M. P., Ershov V. V., The influence of vegetation on the forest soil properties in the republic of Karelia, Eurasian Soil Science, 2019, Vol. 52, No 7, pp. 793–807, DOI: 10.1134/S1064229319050077.

Luk’janec V. B., Soderzhanie azota i zol’nyh jelementov v list’jah duba razlichnogo geograficheskogo proishozhdenija (The content of nitrogen and ash elements in oak leaves of various geographical origin), Lesovedenie, 1980, No 1, pp. 52–57.

Luk’jashhenko K. I., Arhangel’skaja T. A., Modelirovanie temperaturoprovodnosti pochv razlichnogo granulometricheskogo sostava (Modeling the thermal diffusivity of soils of various granulometric composition), Pochvovedenie, 2018, No 2, pp. 179–186, DOI: 10.7868/S0032180X18020053.

Lundegårdh H., Carbon dioxide evolution of soil and crop growth, Soil science, 1927, Vol. 23, No 6, pp. 417–453, DOI: 10.1097/00010694-192706000-00001.

Luoma S., Geographical pattern in photosynthetic light response of Pinus sylvestris in Europe, Functional Ecology, 1997, Vol. 11, No 3, pp. 273–281, DOI: 10.1046/j.1365-2435.1997.00089.x.

Luostarinen K., Tracheid wall thickness and lumen diameter in different axial and radial locations in cultivated Larix sibirica trunks, Silva Fennica, 2012, Vol. 46, No 5, pp. 707–716, DOI: 10.14214/sf.921.

Luostarinen K., Verkasalo E., Birch as sawn timber and in mechanical further processing in Finland. A literature study [in:] Silva Fennica Monographs 1, 2000, 40 p.

Luyssaert S., Schulze E. D., Börner A., Knohl A., Hessenmöller D., Law B. E., Ciais P., Grace J., Old-growth forests as global carbon sinks, Nature, 2008, Vol. 455, pp. 213–215, DOI: 10.1038/nature07276.

Majdi H., Persson H., Spatial distribution of fine roots, rhizosphere and bulk-soil chemistry in an acidified Picea abies stand, Scandinavian Journal of Forest Research, 1993, Vol. 8, No 1–4, pp. 147–155, DOI: 10.1080/02827589309382764.

Mäkelä A., Hari P., Berninger F., Hänninen H., Nikinmaa E., Acclimation of photosynthetic capacity in Scots pine to the annual cycle of temperature, Tree Physiology, 2004, Vol. 24, No 4, pp. 369–376, DOI: 10.1093/treephys/24.4.369.

Mäkelä A., Pulkkinen M., Kolari P., Lagergren F., Berbigier P., Lindroth A., Loustau D., Nikinmaa E., Vesala T., Hari P., Developing an empirical model of stand GPP with the LUE approach: analysis of eddy covariance data at five contrasting conifer sites in Europe, Global Change Biology, 2008, Vol. 14, No 1, pp. 92–108, DOI: 10.1111/j.1365-2486.2007.01463.x.

Mäkelä A., Vanninen P., Vertical structure of Scots pine crowns in different age and size classes, Trees, 2001, Vol. 15, pp. 385–392, DOI: 10.1007/s004680100118.

Mäkinen H., Saranpää P., Linder S., Wood-density variation of Norway spruce in relation to nutrient optimization and fibre dimensions, Canadian Journal of Forest Research, 2002, Vol. 32, No 2, pp. 185–194, DOI: 10.1139/x01-186.

Mao Z., Saint‑André L., Bourrier F., Stokes A., Cordonnier T., Modelling and predicting the spatial distribution of tree root density in heterogeneous forest ecosystems, Annals of Botany, 2015, Vol. 116, No 2, pp. 261–277, DOI: 10.1093/aob/mcv092.

Martens S. N., Breshears D. D., Meyer C. W., Spatial distribution of understory light along the grassland/forest continuum: effects of cover, height, and spatial patterns of tree canopies, Ecological Modelling, 2000, Vol. 126, No 1, pp. 79–93, DOI: 10.1016/S0304-3800(99)00188-X.

Matsinos Y. G., Troumbis A. Y., Modeling competition, dispersal and effects of disturbance in the dynamics of a grassland community using a cellular automaton model, Ecological Modelling, 2002, Vol. 149, No 1–2, pp. 71–83, DOI: 10.1016/S0304-3800(01)00515-4.

Matvienko A. I., Vlijanie azota na mineralizaciju ugleroda v pochvah pod listvennicej sibirskoj i sosnoj obyknovennoj Diss. kand. biol. nauk (Effect of nitrogen on carbon mineralization in soils under Siberian larch and Scots pine. Candidate’s bio. sci. thesis), Krasnojarsk: Institut lesa im. V. N. Sukacheva SO RAN, FIC “Krasnojarskij nauchnyj centr SO RAN”, 2017, 147 p.

Mauer O., Houšková K., Mikita T., The root system of pedunculate oak (Quercus robur L.) at the margins of regenerated stands, Journal of Forest Science, 2017, Vol. 63, No 1, pp. 22–33, DOI: 10.17221/85/2016-JFS.

McCarthy J., Gap dynamics of forest trees: A review with particular attention to boreal forests, Environmental Reviews, 2001, Vol. 9, No 1, pp. 1–59, DOI: 10.1139/a00-012.

Mederski P. S., Bembenek M., Karaszewski Z., Giefing D. F., Sulima‑Olejniczak E., Rosińska M., Łacka A., Density and mechanical properties of Scots pine (Pinus sylvestris L.) wood from a seedling seed orchard, Drewno, 2015, Vol. 58, No 195, pp. 117–124, DOI: 10.12841/wood.1644-3985.123.10.

Medlyn B. E., Dreyer E., Ellsworth D., Forstreuter M., Harley P. C., Kirschbaum M. U. F., Le Roux X., Montpied P., Strassemeyer J., Walcroft A., Wang K., Loustau D., Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data, Plant, Cell & Environment, 2002, Vol. 25, No 9, pp. 1167–1179, DOI: 10.1046/j.1365-3040.2002.00891.x.

Medvedev I. F., Derevjagin S. S., Kozachenko M. A., Gusakova N. N., Ocenka soderzhanija himicheskih jelementov v drevesine razlichnyh porod derev’ev (Assessment of the content of chemical elements in wood of various tree species), Agrarnyj nauchnyj zhurnal, 2015, No 11, pp. 12–14.

Meier I. C., Knutzen F., Eder L. M., Müller‑Haubold H., Goebel M.‑O., Bachmann J., Hertel D., Leuschner C., The deep root system of Fagus sylvatica on sandy soil: Structure and variation across a precipitation gradient, Ecosystems, 2018, Vol. 21, pp. 280–296, DOI: 10.1007/s10021-017-0148-6.

Meinen C., Hertel D., Leuschner C., Biomass and morphology of fine roots in temperate broad-leaved forests differing in tree species diversity: Is there evidence of below-ground overyielding?, Oecologia, 2009, Vol. 161, pp. 99–111, DOI: 10.1007/s00442-009-1352-7.

Migunova E. S., Lesa i lesnye zemli (kolichestvennaja ocenka vzaimosvjazej) (Forests and forest lands (quantitative assessment of relationships)), Moscow: Ekologija, 1993, 364 p.

Mihalakakou G., Santamouris M., Lewis J. O., Asimakopoulos D. N., On the application of the energy balance equation to predict ground temperature profiles, Solar Energy, 1997, Vol. 60, No 3–4, pp. 181–190, DOI: 10.1016/S0038-092X(97)00012-1.

Miner G. L., Bauerle W. L., Baldocchi D. D., Estimating the sensitivity of stomatal conductance to photosynthesis: a review, Plant, Cell and Environment, 2017, Vol. 40, No 7, pp. 1214–1238, DOI: 10.1111/pce.12871.

Modelirovanie dinamiki organicheskogo veshhestva v lesnyh jekosistemah (Modeling the dynamics of organic matter in forest ecosystems), V. N. Kudeyarov (ed.), Moscow: Nauka, 2007, 380 p.

Moeur M., Spatial models of competition and gap dynamics in old-growth Tsuga heterophylla/Thuja plicata forests, Forest Ecology and Management, 1997, Vol. 94, No 1, pp. 175–186, DOI: 10.1016/S0378-1127(96)03976-X.

Moghaddam E. R., Growth, development and yield in pure and mixed forest stands, International Journal of Advanced Biological and Biomedical Research, 2014, Vol. 2, No 10, pp. 2725–2730.

Molchanov A. A., Poljakova A. F., Harakteristika osnovnyh tipov lesa (Characteristics of the main forest types) [in:] Osnovnye tipy biogeocenozov severnoj tajgi (Main types of biogeocenoses of the northern taiga), Moscow: Nauka, 1977, pp. 44–203.

Molchanov A. A., Poljakova A. F., Produktivnost’ organicheskoj massy v sosnjakah sfagnovyh (Productivity of organic mass in sphagnum pine forests) [in:] Produktivnost’ organicheskoj i biologicheskoj massy lesa (Productivity of organic and biological mass of the forest), Moscow: Nauka, 1974, pp. 43–77.

Montesano P. M., Rosette J., Sun G., North P., Nelson R. F., Dubayah R. O., Ranson K. J., Kharuk V., The uncertainty of biomass estimates from modeled ICESat‑2 returns across a boreal forest gradient, Remote Sensing of Environment, 2015, Vol. 158, pp. 95–109, DOI: 10.1016/j.rse.2014.10.029.

Morozova R. M., Himicheskij sostav rastenij elovyh i berjozovyh lesov Karelii (Chemical composition of plants of spruce and birch forests of Karelia) [in:] Lesnye rastitel’nye resursy Juzhnoj Karelii (Forest plant resources of South Karelia), Petrozavodsk: Karelija, 1971, pp. 57–66.

Morozova R. M., Mineral’nyj sostav rastenij lesov Karelii (Mineral composition of forest plants in Karelia), Petrozavodsk: Goskomizdat, 1991, 100 p.

Mõttus M., Ross J., Sulev M., Experimental study of ratio of PAR to direct integral solar radiation under cloudless conditions, Agricultural and Forest Meteorology, 2001, Vol. 109, No 3, pp. 161–170, DOI: 10.1016/S0168-1923(01)00269-6.

Mõttus M., Sulev M., Baret F., Lopez‑Lozano R., Reinart A., Photosynthetically active radiation: measurement and modeling, [in:] Solar Radiation. Richter C., Lincot D., Gueymard C. A. (Eds.), New York: Springer, 2013, pp. 140–169.

Nabuurs G. J., Schelhaas M. J., Pussinen A., Validation of the European Forest Information Scenario Model (EFISCEN) and a projection of Finnish forests, Silva Fennica, 2000, Vol. 34, No 2, pp. 167–179, DOI: 10.14214/sf.638.

Nahm M., Matzarakis A., Rennenberg H., Geßler A., Seasonal courses of key parameters of nitrogen, carbon and water balance in European beech (Fagus sylvatica L.) grown on four different study sites along a European North-South climate gradient during the 2003 drought, Trees, 2007, Vol. 21, pp. 79–92, DOI: 10.1007/s00468-006-0098-7.

Niinemets Ü., Changes in foliage distribution with relative irradiance and tree size: Differences between the saplings of Acer platanoides and Quercus robur, Ecological Research, 1996, Vol. 11, No 3, pp. 269–281, DOI: 10.1007/BF02347784.

Niinemets Ü., Growth of young trees of Acer platanoides and Quercus robur along a gap-understory continuum: Interrelationships between allometry, biomass partitioning, nitrogen, and shade tolerance, International Journal of Plant Sciences, 1998, Vol. 159, No 2, pp. 318–330, DOI: 10.1086/297553.

Niinemets Ü., Kull O., Stoichiometry of foliar carbon constituents varies along light gradients in temperate woody canopies: Implications for foliage morphological plasticity, Tree Physiology, 1998, Vol. 18, No 7, pp. 467–479, DOI: 10.1093/treephys/18.7.467.

Niinemets Ü., Oja V., Kull O., Shape of leaf photosynthetic electron transport versus temperature response curve is not constant along canopy light gradients in temperate deciduous trees, Plant, Cell & Environment, 1999, Vol. 22, No 12, pp. 1497–1513, DOI: 10.1046/j.1365-3040.1999.00510.x.

Niinemets Ü., Valladares F., Tolerance to shade, drought, and waterlogging of temperate Northern hemisphere trees and shrubs, Ecological Monographs, 2006, Vol. 76, No 4, pp. 521–547, DOI: 10.1890/0012-9615(2006)076[0521:TTSDAW]2.0.CO;2.

Nikonov V. V., Lukina N. V., Smirnova E. V., Isaeva L. G., Vlijanie eli i sosny na formirovanie pervichnoj produktivnosti nizhnimi jarusami hvojnyh lesov Kol’skogo poluostrova (Influence of spruce and pine on the formation of primary productivity by the lower tiers of coniferous forests of the Kola Peninsula), Botanicheskij zhurnal, 2002, Vol. 87, No 8, pp. 112–124.

Nilsson M.‑C., Wardle D. A., Understory vegetation as a forest ecosystem driver: evidence from the northern Swedish boreal forest, Frontiers in Ecology and the Environment, 2005, Vol. 3, No 8, pp. 421–428, DOI: 10.1890/1540-9295(2005)003[0421:UVAAFE]2.0.CO;2.

Nobel P. S., Geller G. N., Temperature modelling of wet and dry desert soils, The Journal of Ecology, 1987, Vol. 75, No 1, pp. 247–258, DOI: 10.2307/2260549.

Norby R. J., DeLucia E. H., Gielen B., Calfapietra C., Giardina C. P., King J. S., Ledford J., McCarthy H. R., Moore D. J. P., Ceulemans R., De Angelis P., Finzi A. C., Karnosky D. F., Kubiske M. E., Lukac M., Pregitzer K. S., Scarascia‑Mugnozza G. E., Schlesinger W. H., Oren R., Forest response to elevated CO2 is conserved across a broad range of productivity, Proceedings of the National Academy of Sciences, 2005, Vol. 102, No 50, pp. 18052–18056, DOI: 10.1073/pnas.0509478102.

Nosova L. M., Osobennosti vertikal’nogo raspredelenija fitomassy lipy raznogo vozrasta v lesnyh biogeocenozah (Peculiarities of vertical distribution of lime phytomass of different ages in forest biogeocenoses), Bjulleten’ Moskovskogo obshhestva ispytatelej prirody. Otdel biologicheskij, 1970, Vol. LXXV(3), pp. 96–107.

Nosova L. M., Holopova L. B., Osobennosti obmena veshhestv mezhdu rastitel’nost’ju i pochvoj v iskusstvennyh nasazhdenijah sosny na dernovo-podzolistyh pochvah (Features of metabolism between vegetation and soil in artificial pine plantations on soddy-podzolic soils) [in:] Obshhie problemy biogeocenologii (General problems of biogeocenology), Moscow: Nauka, 1990, pp. 252–266.

Novickaja J. E., Osobennosti fiziologo-biohimicheskih processov v hvoe i pobegah eli v uslovijah Severa (Features of physiological and biochemical processes in the needles and shoots of spruce in the conditions of the North), Leningrad: Nauka, 1971, 117 p.

Oborny B., Mony C., Herben T., From virtual plants to real communities: a review of modelling clonal growth, Ecological Modelling, 2012, Vol. 23, pp. 3–19, DOI: 10.1016/j.ecolmodel.2012.03.010.

Olchev A., Radler K., Sogachev A., Panferov O., Gravenhorst G., Application of a three-dimensional model for assessing effects of small clear-cuttings on radiation and soil temperature, Ecological Modelling, 2009, Vol. 220, No 21, pp. 3046–3056, DOI: 10.1016/j.ecolmodel.2009.02.004.

Oleksyn J., Żytkowiak R., Reich P. B., Tjoelker M. G., Karolewski P., Ontogenetic patterns of leaf CO2 exchange, morphology and chemistry in Betula pendula trees, Trees, 2000, Vol. 14, pp. 271–281, DOI: 10.1007/PL00009768.

Oostra S., Majdi H., Olsson M., Impact of tree species on soil carbon stocks and soil acidity in southern Sweden, Scandinavian Journal of Forest Research, 2006, Vol. 21, No 5, pp. 364–371, DOI: 10.1080/02827580600950172.

Orlova M. A., Lukina N. V., Kamaev I. O., Smirnov V. E., Kravchenko T. V., Mozaichnost’ lesnyh biogeocenozov i plodorodie pochv (Mosaic nature of forest biogeocenoses and soil fertility), Lesovedenie, 2011, No 6, pp. 39–48.

Oskina N. V., Soderzhanie azota i zol’nyh jelementov v nadzemnoj fitomasse kul’tur sosny obyknovennoj Vladimirskoj, Ul’janovskoj i Kujbyshevskoj oblastej (The content of nitrogen and ash elements in the above-ground phytomass of Scots pine crops in Vladimir, Ulyanovsk and Kuibyshev regions) [in:] Biologicheskaja produktivnost’ lesov Povolzh’ja (Biological productivity of forests of the Volga region), Moscow: Nauka, 1982, pp. 7–11.

Ostonen I., Lõhmus K., Helmisaari H.‑S., Truu J., Meel S., Fine root morphological adaptations in Scots pine, Norway spruce and silver birch along a latitudinal gradient in boreal forests, Tree Physiology, 2007, Vol. 27, No 11, pp. 1627–1634, DOI: 10.1093/treephys/27.11.1627.

Oulehle F., Cosby B. J., Wright R. F., Hruška J., Kapáček J., Krám P., Evans C. D., Moldan F., Modelling soil nitrogen: the MAGIC model with nitrogen retention linked to carbon turnover using decomposer dynamics, Environmental Pollution, 2012, Vol. 165, pp. 158–166, DOI: 10.1016/j.envpol.2012.02.021.

Pace R., De Fino F., Rahman M. A., Pauleit S., Nowak D. J., Grote R., A single tree model to consistently simulate cooling, shading, and pollution uptake of urban trees, International Journal of Biometeorology, 2021, Vol. 65, No 2, pp. 277–289, DOI: 10.1007/s00484-020-02030-8.

Packham J. R., Thomas P. A., Atkinson M. D., Degen T., Biological flora of the British Isles: Fagus sylvatica, Journal of Ecology, 2012, Vol. 100, pp. 1557–1608, DOI: 10.1111/j.1365-2745.2012.02017.x.

Pagès L., Doussan C., Vercambre G., An introduction on below-ground environment and resource acquisition, with special reference on trees. Simulation models should include plant structure and function, Annals of Fores Science, 2000, Vol. 57, No 5–6, pp. 513–520, DOI: 10.1051/forest:2000138.

Pahaut E., Les cristaux de neige et leurs métamorphoses (Snow crystals and their metamorphosies) [in:] Monographies de la Météorologie Nationale 96, 1975, 61 p.

Parajuli A., Nadeau D. F., Anctil F., Parent A. C., Bouchard B., Girard M., Jutras S., Exploring the spatiotemporal variability of the snow water equivalent in a small boreal forest catchment through observation and modeling, Hydrological Processes, 2020, Vol. 34, No 11, pp. 2628–2644, DOI: 10.1002/hyp.13756.

Parton W. J., Stewart J. W. B., Cole C. V., Dynamics of C, N, P and S in grasslands soils: a model, Biogeochemistry, 1988, Vol. 5, pp. 109–131, DOI: 10.1007/BF02180320.

Patankar S., Chislennye metody reshenija zadach teploobmena i dinamiki zhidkosti (Numerical methods for solving problems of heat transfer and fluid dynamics), Moscow: Jenergoatomizdat, 1984, 152 p.

Peichl M., Leava N. A., Kiely G., Above- and belowground ecosystem biomass, carbon and nitrogen allocation in recently afforested grassland and adjacent intensively managed grassland, Plant and Soil, 2012, Vol. 350, pp. 281–296, DOI: 10.1007/s11104-011-0905-9.

Pellicciotti F., Brock B., Strasser U., Burlando P., Funk M., Corripio J., An enhanced temperature-index glacier melt model including the shortwave radiation balance: development and testing for Haut Glacier d’Arolla, Switzerland, Journal of Glaciology, 2005, Vol. 51, No 175, pp. 573–587, DOI: 10.3189/172756505781829124.

Peng C., Liu J., Dang Q., Apps M. J., Jiang H. TRIPLEX: a generic hybrid model for predicting forest growth and carbon and nitrogen dynamic, Ecological Modelling, 2002, Vol. 153, No 1–2, pp. 109–130, DOI: 10.1016/S0304-3800(01)00505-1.

Peñuelas J., Estiarte M., Trends in plant carbon concentration and plant demand for N throughout this century, Oecologia, 1996, Vol. 109, pp. 69–73, DOI: 10.1007/s004420050059.

Persson H., von Fircks Y., Majdi H., Nilsson L. O., Root distribution in a Norway spruce (Picea abies (L.) Karst.) stand subjected to drought and ammonium-sulphate application, Plant and Soil, 1995, Vol. 168, pp. 161–165, DOI: 10.1007/BF00029324.

Perttunen J., The LIGNUM functional-structural tree model: Dissertation. Systems Analysis Laboratory, Helsinki University of Technology, 2009, 52 p.

Petriţan A. M., von Lüpke B., Petriţan I. C., Influence of light availability on growth, leaf morphology and plant architecture of beech (Fagus sylvatica L.), maple (Acer pseudoplatanus L.) and ash (Fraxinus excelsior L.) saplings, European Journal of Forest Research, 2009, Vol. 128, pp. 61–74, DOI: 10.1007/s10342-008-0239-1.

Peuke A. D., Rennenberg H., Carbon, nitrogen, phosphorus, and sulphur concentration and partitioning in beech ecotypes (Fagus sylvatica L.): Phosphorus most affected by drought, Trees, 2004, Vol. 18, No 6, pp. 639–648, DOI: 10.1007/s00468-004-0335-x.

Pigott C. D., Tilia cordata Miller, Journal of Ecology, 1991, Vol. 79, No 4, pp. 1147–1207, DOI: 10.2307/2261105.

Plauborg F., Simple model for 10 cm soil temperature in different soils with short grass, European Journal of Agronomy, 2002, Vol. 17, No 3, pp. 173–179, DOI: 10.1016/S1161-0301(02)00006-0.

Pommerening A., Grabarnik P., Individual-based methods in forest ecology and management, Springer, 2019, 411 p., DOI: 10.1007/978-3-030-24528-3.

Portnov A. M., Bykhovets S. S., Din E. S., Ivanova N. V., Frolov P. V., Shanin V. N., Shashkov M. P., Kolichestvennaja ocenka razmerov okon v pologe starovozrastnogo shirokolistvennogo lesa nazemnymi i distancionnymi metodami (Quantitative assessment of the size of windows in the canopy of old-growth broad-leaved forest by ground and remote methods), Matematicheskoe modelirovanie v jekologii. Materialy Sed’moj Nacional’noj nauchnoj konferencii s mezhdunarodnym uchastiem (Mathematical modeling in ecology. Proceedings of the Seventh National Scientific Conference with International Participation), 9–12 November 2021, Puschino: FIC PNCBI RAN, 2021, pp. 99–102.

Posch M., Reinds G. J., A very simple dynamic soil acidification model for scenario analyses and target loads calculation, Environmental Modelling and Software, 2009, Vol. 24, No 3, pp. 329–340, DOI: 10.1016/j.envsoft.2008.09.007.

Praciak A., The CABI encyclopedia of forest trees, CABI, 2013, 536 p.

Prentice I. C., Helmisaari H., Silvics of north European trees: Compilation, comparisons and implications for forest succession modelling, Forest Ecology and Management, 1991, Vol. 42, No 1–2, pp. 79–93, DOI: 10.1016/0378-1127(91)90066-5.

Pretzsch H., Canopy space filling and tree crown morphology in mixed-species stands, Forest Ecology and Management, 2014, Vol. 327, pp. 251–264, DOI: 10.1016/j.foreco.2014.04.027.

Pretzsch H., The effect of tree crown allometry on community dynamics in mixed-species stands versus monocultures. A review and perspectives for modeling and silvicultural regulation, Forests, 2019, Vol. 10, No 9, ID 810, DOI: 10.3390/f10090810.

Pretzsch H., Biber P., Ďurský J., The single tree-based stand simulator SILVA: Construction, application and evaluation, Forest Ecology and Management, 2002, Vol. 162, No 1, pp. 3–21, DOI: 10.1016/S0378-1127(02)00047-6.

Pretzsch H., Bielak K., Block J., Bruchwald A., Dieler J., Ehrhart H.‑P., Kohnle U., Nagel J., Spellmann H., Zasada M., Zingg A., Productivity of mixed versus pure stands of oak (Quercus petraea (Matt.) Liebl. and Quercus robur L.) and European beech (Fagus sylvatica L.) along an ecological gradient, European Journal of Forest Research, 2013, Vol. 132, No 2, pp. 263–280, DOI: 10.1007/s10342-012-0673-y.

Pretzsch H., Schütze G., Tree species mixing can increase stand productivity, density and growth efficiency and attenuate the trade-off between density and growth throughout the whole rotation, Annals of Botany, 2021, Vol. 128, No 6, pp. 767–786, DOI: 10.1093/aob/mcab077.

Pretzsch P., Biber P., Uhl E., Dahlhausen J., Rötzer T., Caldentey J., Koike T., van Con T., Chavanne A., Seifert T., du Toit B., Farnden C., Pauleit S., Crown size and growing space requirement of common tree species in urban centres, parks, and forests, Urban Forestry & Urban Greening, 2015, Vol. 14, No 3, pp. 466–479, DOI: 10.1016/j.ufug.2015.04.006.

Priputina I. V., Chertov O. G., Frolov P. V., Shanin V. N., Grabarnik P. Y., Vkljuchenie rizosfernogo prajming-jeffekta v model’ dinamiki organicheskogo veshhestva pochv Romul_Hum: podhody i rezul’taty predvaritel’nogo testirovanija (Inclusion of the rhizospheric priming effect in the Romul_Hum soil organic matter dynamics model: approaches and results of preliminary testing), Matematicheskoe modelirovanie v jekologii. Materialy Sed’moj Nacional’noj nauchnoj konferencii s mezhdunarodnym uchastiem (Mathematical modeling in ecology. Proceedings of the Seventh National Scientific Conference with International Participation), 9–12 November 2021. Puschino: FIC PNCBI RAN, 2021, pp. 106–108.

Priputina I. V., Frolova G. G., Bykhovets S. S., Shanin V. N., Lebedev V. G., Shestibratov K. A., Modelirovanie produktivnosti lesnyh plantacij pri raznyh shemah prostranstvennogo razmeshhenija derev’ev (Modeling the productivity of forest plantations under different tree spatial arrangements), Matematicheskaja biologija i bioinformatika, 2016, Vol. 11, No 2, pp. 245–262, DOI: 10.17537/2016.11.245.

Priputina I. V., Frolova G. G., Shanin V. N., Myakshina T. N., Grabarnik P. Y., Spatial distribution of organic matter and nitrogen in the entic podzols of the Prioksko-Terrasnyi reserve and its relationship with the structure of forest phytocenoses, Eurasian Soil Science, 2020, Vol. 53, No 8, pp. 1021–1032, DOI: 10.1134/S1064229320080128.

Pugachevskij A. B., Cenopopuljacii eli. Struktura, dinamika, faktory reguljacii (Coenopopulations of spruce. Structure, dynamics, factors of regulation), Minsk: Nauka i tehnika, 1992, 206 p.

Puhe J., Growth and development of the root system of Norway spruce (Picea abies) in forest stands — a review, Forest Ecology and Management, 2003, Vol. 175, No 1–3, pp. 253–273, DOI: 10.1016/S0378-1127(02)00134-2.

Pukkala T., Kolström T., A stochastic spatial regeneration model for Pinus sylvestris, Scandinavian Journal of Forest Research, 1992, Vol. 7, No 1–4, pp. 377–385, DOI: 10.1080/02827589209382730.

Pukkala T., Lähde E., Laiho O., Continuous cover forestry in Finland — Recent research results, [in:] Continuous cover Forestry, second ed. Pukkala T., von Gadow K. (eds.) Springer, 2012, pp. 85–128, DOI: 10.1007/978-94-007-2202-6_3.

Püttsepp Ü., Lõhmus K., Persson H. Å., Ahlström K., Fine-root distribution and morphology in an acidic Norway spruce (Picea abies (L.) Karst.) stand in SW Sweden in relation to granulated wood ash application, Forest Ecology and Management, 2006, Vol. 221, No 1–3, pp. 291–298, DOI: 10.1016/j.foreco.2005.10.012.

R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, 2014, URL: http://www.R-project.org/ (accessed on 31.08.2022).

Rabotnov T. A., Azot v nazemnyh biogeocenozah (Nitrogen in terrestrial biogeocenoses) [in:] Strukturno-funkcional’naja organizacija biogeocenozov (Structural and functional organization of biogeocenoses), Moscow: Nauka, 1980, pp. 69–90.

Räim O., Kaurilind E., Hallik L., Merilo E., Why does needle photosynthesis decline with tree height in Norway spruce?, Plant Biology, 2012, Vol. 14, No 2, pp. 306–314, DOI: 10.1111/j.1438-8677.2011.00503.x.

Rankinen K., Karvonen T., Butterfield D., A simple model for predicting soil temperature in snow-covered and seasonally frozen soil: Model description and testing, Hydrology and Earth System Sciences, 2004, Vol. 8, No 4, pp. 706–716, DOI: 10.5194/hess-8-706-2004.

Ranney T. G., Bir R. E., Skroch W. A., Comparative drought resistance among six species of birch (Betula): influence of mild water stress on water relations and leaf gas exchange, Tree Physiology, 1991, Vol. 8, No 4, pp. 351–360, DOI: 10.1093/treephys/8.4.351.

Rautiainen M., Stenberg P., Simplified tree crown model using standard forest mensuration data for Scots pine, Agricultural and Forest Meteorology, 2005, Vol. 128, No 1–2, pp. 123–129, DOI: 10.1016/j.agrformet.2004.09.002.

Raynaud X., Leadley P. W., Symmetry of belowground competition in a spatially explicit model of nutrient competition, Ecological Modelling, 2005, Vol. 189, pp. 447–453, DOI: 10.1016/j.ecolmodel.2005.03.008.

Remezov N. P., Bykova L. N., Smirnova K. M., Potreblenie i krugovorot azota i zol’nyh jelementov v lesah Evropejskoj chasti SSSR (Consumption and circulation of nitrogen and ash elements in the forests of the European part of the USSR), Moscow: Izdatel’stvo Moskovskogo universiteta, 1959, 284 p.

Remezov N. P., Pogrebnjak P. S., Lesnoe pochvovedenie (Forest soil science), Moscow: Lesnaja promyshlennost’, 1965, 324 p.

Renshaw E., Computer simulation of Sitka spruce: Spatial branching models for canopy growth and root structure, IMA Journal of Mathematics Applied in Medicine & Biology, 1985, Vol. 2, No 3, pp. 183–200, DOI: 10.1093/imammb/2.3.183.

Reshetnikova T. V., Lesnye podstilki kak depo biogennyh jelementov (Forest litter as a depot of biogenic elements), Vestnik Krasnojarskogo gosudarstvennogo agrarnogo universiteta, 2011, No 12, pp. 74–81.

Richards A. E., Forrester D. I., Bauhus J., Scherer‑Lorenzen M., The influence of mixed tree plantations on the nutrition of individual species: a review, Tree Physiology, 2010, Vol. 30, No 9, pp. 1192–1208, DOI: 10.1093/treephys/tpq035.

Romanov E. M., Nureeva T. V., Eremin N. V., The role of planted forests in improving the productive capacity and ecological potential of Scots pine boreal forests in the Middle Volga Region, New Zealand Journal of Forestry Science, 2016, Vol. 46, ID 10, DOI: 10.1186/s40490-016-0066-y.

Ross J. K., Radiacionnyj rezhim i arhitektonika rastitel’nogo pokrova (Radiation regime and architectonics of vegetation cover), Leningrad: Gidrometeoizdat, 1975, 342 p.

Rothe A., Binkley D., Nutritional interactions in mixed species forests: a synthesis, Canadian Journal of Forest Research, 2001, Vol. 31, No 11, pp. 1855–1870, DOI: 10.1139/x01-120.

Rötzer T., Mixing patterns of tree species and their effects on resource allocation and growth in forest stands, Nova Acta Leopoldina, 2013, Vol. 114, No 391, pp. 239–254.

Rötzer T., Liao Y., Goergen K., Schüler G., Pretzsch H., Modelling the impact of climate change on the productivity and water-use efficiency of a central European beech forest, Climate Research, 2013, Vol. 58, No 1, pp. 81–95, DOI: 10.3354/cr01179.

Rusanova G. V., Biologicheskaja produktivnost’ i soderzhanie himicheskih jelementov v fitomasse el’nika-zelenomoshnika (Biological productivity and content of chemical elements in the phytomass of green moss spruce forest) [in:] Produktivnost’ i krugovorot jelementov v fitocenozah severa (Productivity and cycle of elements in phytocenoses of the north), Leningrad: Nauka, 1975, pp. 30–51.

Rust S., Savill P. S., The root systems of Fraxinus excelsior and Fagus sylvatica and their competitive relationships, Forestry: an International Journal of Forest Research, 2000, Vol. 73, No 5, pp. 499–508, DOI: 10.1093/forestry/73.5.499.

Sannikov S. N., Sannikova N. S., Les kak podzemno-somknutaja dendrocenojekosistema (Forest as an underground-closed dendrocenoecosystem), Sibirskij lesnoj zhurnal, 2014, No 1, pp. 25–34.

Saxton K. E., Rawls W. J., Soil water characteristic estimates by texture and organic matter for hydrologic solutions, Soil Science Society of America Journal, 2006, Vol. 70, No 5, pp. 1569–1578, DOI: 10.2136/sssaj2005.0117.

Schaetzl R. J., Knapp B. D., Isard S. A., Modeling soil temperatures and the mesic‐frigid boundary in the central Great Lakes region, 1951–2000, Soil Science Society of America Journal, 2005, Vol. 69, No 6, pp. 2033–2040, DOI: 10.2136/sssaj2004.0349.

Schiffers K., Tielbörger K., Tietjen B., Jeltsch F., Root plasticity buffers competition among plants: theory meets experimental data, Ecology, 2011, Vol. 92, No 3, pp. 610–620, DOI: 10.1890/10-1086.1.

Schmid I., The influence of soil type and interspecific competition on the fine root system of Norway spruce and European beech, Basic and Applied Ecology, 2002, Vol. 3, No 4, pp. 339–346, DOI: 10.1078/1439-1791-00116.

Schmid I., Kazda M., Root distribution of Norway spruce in monospecific and mixed stands on different soils, Forest Ecology and Management, 2002, Vol. 159, No 1–2, pp. 37–47, DOI: 10.1016/S0378-1127(01)00708-3.

Schröter M., Härdtle W., von Oheimb G., Crown plasticity and neighborhood interactions of European beech (Fagus sylvatica L.) in an old-growth forest, European Journal of Forest Research, 2012, Vol. 131, pp. 787–798, DOI: 10.1007/s10342-011-0552-y.

Seidel D., Leuschner C., Müller A., Krause K., Crown plasticity in mixed forests — Quantifying asymmetry as a measure of competition using terrestrial laser scanning, Forest Ecology and Management, 2011, Vol. 261, No 11, pp. 2123–2132, DOI: 10.1016/j.foreco.2011.03.008.

Seidl R., Lexer M. J., Jäger D., Hönninger K., Evaluating the accuracy and generality of a hybrid patch model, Tree Physiology, 2005, Vol. 25, No 7, pp. 939–951, DOI: 10.1093/treephys/25.7.939.

Seidl R., Rammer W., Scheller R. M., Spies T. A., An individual-based process model to simulate landscape-scale forest ecosystem dynamics, Ecological Modelling, 2012, Vol. 231, pp. 87–100, DOI: 10.1016/j.ecolmodel.2012.02.015.

Sekretenko O. P., Analiz prostranstvennoj struktury i jeffektov vzaimodejstvija v biologicheskih soobshhestvah. Avtoref. Diss. k. f.-m. n. (Analysis of the spatial structure and effects of interaction in biological communities Extended abstract of candidate’s phys. and math. sci. thesis), Krasnojarsk, 2001, 22 p.

Shanin V. N., Grabarnik P. Y., Bykhovets S. S., Chertov O. G., Priputina I. V., Shashkov M. P., Ivanova N. V., Stamenov M. N., Frolov P. V., Zubkova E. V., Ruchinskaja E. V., Parametrizacija modeli produkcionnogo processa dlja dominirujushhih vidov derev’ev Evropejskoj chasti RF v zadachah modelirovanija dinamiki lesnyh jekosistem (Parameterization of the production process model for the dominant tree species of the European part of the Russian Federation in the problems of modeling the dynamics of forest ecosystems), Matematicheskaja biologija i bioinformatika, 2019, Vol. 14, No 1, pp. 54–76, DOI: 10.17537/2019.14.54.

Shanin V. N., Grabarnik P. Y., Shashkov M. P., Ivanova N. V., Bykhovets S. S., Frolov P. V., Stamenov M. N., Crown asymmetry and niche segregation as an adaptation of trees to competition for light: conclusions from simulation experiments in mixed boreal stands, Mathematical and Computational Forestry and Natural-Resource Sciences, 2020, Vol. 12, No 1, pp. 26–49, DOI: 10.5281/zenodo.3759256.

Shanin V. N., Rocheva L. K., Shashkov M. P., Ivanova N. V., Moskalenko S. V., Burnasheva E. R., Spatial distribution of root biomass of certain tree species (Picea abies, Pinus sylvestris, Betula sp.), Biology Bulletin of the Russian Academy of Sciences, 2015b, Vol. 42, No 3, pp. 260–268, DOI: 10.1134/S1062359015030115.

Shanin V. N., Shashkov M. P., Ivanova N. V., Bykhovets S. S., Grabarnik P. Y., Issledovanie struktury drevostoev i mikroklimaticheskih uslovij pod pologom lesa na postojannoj probnoj ploshhadi v Prioksko-terrasnom zapovednike (Study of the structure of forest stands and microclimatic conditions under the forest canopy on a permanent sample plot in the Prioksko-Terrasny Reserve), Trudy Prioksko-terrasnogo zapovednika, Issue 7. Moscow: Tovarishhestvo nauchnyh izdanij KMK, 2018, pp. 68–80.

Shanin V. N., Shashkov M. P., Ivanova N. V., Grabarnik P. Y., Vlijanie konkurencii v pologe lesa na prostranstvennuju strukturu drevostoev i formu kron dominantov drevesnogo jarusa na primere lesov evropejskoj chasti Rossii (Influence of competition in the forest canopy on the spatial structure of forest stands and the shape of crowns of tree layer dominants on the example of forests in the European part of Russia), Russian Journal of Ecosystem Ecology, 2016, Vol. 1, No 4, pp. 112–125, DOI: 10.21685/2500-0578-2016-4-5.

Shanin V., Hökkä H., Grabarnik P., Testing the performance of some competition indices against experimental data and outputs of spatially-explicit simulation models, Forests, 2021a, Vol. 12, No 10, ID 1415, DOI: 10.3390/f12101415.

Shanin V., Juutinen A., Ahtikoski A., Frolov P., Chertov O., Rämö J., Lehtonen A., Laiho R., Mäkiranta P., Nieminen M., Laurén A., Sarkkola S., Penttilä T., Ťupek B., Mäkipää R., Simulation modelling of greenhouse gas balance in continuous-cover forestry of Norway spruce stands on nutrient-rich drained peatlands, Forest Ecology and Management, 2021b, Vol. 496, ID 119479, DOI: 10.1016/j.foreco.2021.119479.

Shanin V., Mäkipää R., Shashkov M., Ivanova N., Shestibratov K., Moskalenko S., Rocheva L., Grabarnik P., Bobkova K., Manov A., Osipov A., Burnasheva E., Bezrukova M., New procedure for the simulation of belowground competition can improve the performance of forest simulation models, European Journal of Forest Research, 2015a, Vol. 134, pp. 1055–1074, DOI: 10.1007/s10342-015-0909-8.

Shashkov M. P., Bobrovsky M. V., Shanin V. N., Khanina L. G., Grabarnik P. Y., Stamenov M. N., Ivanova N. V., Data on 30‑year stand dynamics in an old-growth broad-leaved forest in the Kaluzhskie Zaseki State Nature Reserve, Russia, Nature Conservation Research, 2022, Vol. 7, Suppl. 1, pp. 24–37, DOI: 10.24189/ncr.2022.013.

Shein E. V., Kurs fiziki pochv (Course of soil physics), Moscow: Izdatel’stvo MGU, 2005, 432 p.

Shorohova E., Kapitsa E., Influence of the substrate and ecosystem attributes on the decomposition rates of coarse woody debris in European boreal forests, Forest Ecology and Management, 2014, Vol. 315, pp. 173–184, DOI: 10.1016/j.foreco.2013.12.025.

Shugart H. H., Leemans R., Bonan G. B., A system analysis of the global boreal forest. Cambridge University Press, 1992, 580 p., DOI: 10.1017/CBO9780511565489.

Shvidenko A. Z., Schepaschenko D. G., Nil’sson S., Buluj Y. I., Tablicy i modeli rosta i produktivnosti osnovnyh lesoobrazujushhih porod Severnoj Evrazii (normativno-spravochnye materialy) (Tables and models of growth and productivity of the main forest-forming species of Northern Eurasia (normative reference materials)), Moscow: Federal’noe agentstvo lesnogo hozjajstva. Mezhdunarodnyj institut prikladnogo sistemnogo analiza, 2008, 886 p.

Sievänen R., Perttunen J., Nikinmaa E., Kaitaniemi P., Toward extension of a single tree functional-structural model of Scots pine to stand level: Effect of the canopy of randomly distributed, identical trees on development of tree structure, Functional Plant Biology, 2008, Vol. 35, No 10, pp. 964–975, DOI: 10.1071/FP08077.

Sinkkonen A., Red reveals branch die-back in Norway maple Acer platanoides, Annals of Botany, 2008, Vol. 102, No 3, pp. 361–366, DOI: 10.1093/aob/mcn101.

Skarvelis M., Mantanis G., Physical and mechanical properties of beech wood harvested in the Greek public forests, Wood Research, 2013, Vol. 58, No 1, pp. 123–130.

Smejan N. I., Romanova T. A., Turenkov N. I., Tikhonov S. A., Balhanova K. V., Podzolistye pochvy Belorusskoj SSR (Podzolic soils of the Byelorussian SSR) [in:] Podzolistye pochvy zapada Evropejskoj chasti SSSR (Podzolic soils of the west of the European part of the USSR), Moscow: Kolos, 1977, pp. 31–109.

Spielvogel S., Prietzel J., Auerswald K., Kogel‑Knabner I., Site-specific spatial patterns of soil organic carbon stocks in different landscape units of a high-elevation forest including a site with forest dieback, Geoderma, 2009, Vol. 152, No 3–4, pp. 218–230, DOI: 10.1016/j.geoderma.2009.03.009.

Spravochnik po drevesine (Handbook of wood) B. N. Ugolev (ed.), Moscow: Lesnaja promyshlennost’, 1989, 296 p.

Šrámek M., Čermák J., The vertical leaf distribution of Ulmus laevis Pall., Trees, 2012, Vol. 26, pp. 1781–1792, DOI: 10.1007/s00468-012-0747-y.

Stadt K. J., Lieffers V. J., MIXLIGHT: a flexible light transmission model for mixed-species forest stands, Agricultural and Forest Meteorology, 2000, Vol. 102, No 4, pp. 235–252, DOI: 10.1016/S0168-1923(00)00128-3.

Stakanov V. D., Raspredelenie organicheskogo veshhestva v razlichnyh chastjah derev’ev sosny obyknovennoj (Distribution of organic matter in different parts of Scotch pine trees), Lesovedenie, 1990, No 4, pp. 25–33.

Stanley R. P., Differential posets, Journal of the American Mathematical Society, 1988, Vol. 1, No 4, pp. 919–961, DOI: 10.2307/1990995.

Starr M., Helmisaari H.‑S., Merilä P., Modeling rooting depth and distribution from incomplete profile root biomass data, Roots to the Future“, 8th Symposium of the International Society of Root Research, 26–29 June 2012, Dundee, Scotland, p. 52.

Starr M., Palviainen M., Finér L., Piirainen S., Mannerkoski H., Modelling rooting depth of trees in boreal forests, Abstracts of International Symposium “Root Research and Applications” RootRAP, 2–4 September 2009, Boku Vienna, Austria, 2009, pp. 1–2.

Steffens C., Helfrich M., Joergensen R. G., Eissfeller V., Flessa H., Translocation of 13C‑labeled leaf or root litter carbon of beech (Fagus sylvatica L.) and ash (Fraxinus excelsior L.) during decomposition — a laboratory incubation experiment, Soil Biology and Biochemistry, 2015, Vol. 83, pp. 125–137, DOI: 10.1016/j.soilbio.2015.01.015.

Stoljarov D. P., Polubojarinov V. N., Minaev V. N., Dekatov N. N., Nekrasova G. N., Rekomendacii po ocenke stroenija, tovarnoj struktury i kachestva drevesiny raznovozrastnyh el’nikov s cel’ju organizacii vyborochnogo hozjajstva (Recommendations for assessing the structure, commodity structure and quality of wood of spruce forests of different ages in order to organize a selective economy), Leningrad: NII lesnogo hozjajstva, 1989, 56 p.

Strong W. L., La Roi G. H., Root density — soil relationships in selected boreal forests of central Alberta, Canada, Forest Ecology and Management, 1985, Vol. 12, No 3–4, pp. 233–251, DOI: 10.1016/0378-1127(85)90093-3.

Strous L., Astronomy answers. URL: https://aa.quae.nl/en/index.html (03 October 2022).

Sudachkova N. E., Miljutina I. L., Semenova G. P., Specifika metabolizma listvennicy sibirskoj i listvennicy Gmelina v razlichnyh jekologicheskih uslovijah (Metabolic specifics of Siberian larch and Gmelin larch under different environmental conditions), Hvojnye boreal’noj zony, 2003, Vol. 21, No 1, pp. 54–60.

Sukcessionnye processy v zapovednikah Rossii i problemy sohranenija biologicheskogo raznoobrazija (Succession processes in the reserves of Russia and problems of biological diversity conservation), O. V. Smirnova, E. S. Shaposhnikov (ed.), St. Petersburg: RBO, 1999, 549 p.

Suvorova G., Korzukhin M., Ivanova M., Influence of environmental factors on photosynthesis of three coniferous species, Annual Research & Review in Biology, 2017, Vol. 12, No 3, pp. 1–14, DOI: 10.9734/ARRB/2017/31526.

Sverdrup H., Belyazid S., Nilgard B., Ericson L., Modelling change in ground vegetation response to acid and nitrogen pollution, climate change and forest management, Water, Air & Soil Pollution, 2007, Vol. 7, pp. 163–179, DOI: 10.1007/s11267-006-9067-9.

Swenson J. J., Waring R. H., Fan W., Coops N., Predicting site index with a physiologically based growth model across Oregon, USA, Canadian Journal of Forest Research, 2005, Vol. 35, No 7, pp. 1697–1707, DOI: 10.1139/x05-089.

Tahvanainen T., Forss E., Individual tree models for the crown biomass distribution of Scots pine, Norway spruce and birch in Finland, Forest Ecology and Management, 2008, Vol. 255, No 3–4, pp. 455–467, DOI: 10.1016/j.foreco.2007.09.035.

Tahvonen O., Rämö J., Optimality of continuous cover vs. clear-cut regimes in managing forest resources, Canadian Journal of Forest Research, 2016, Vol. 46, No 7, pp. 891–901, DOI: 10.1139/cjfr-2015-0474.

Takenaka C., Miyahara M., Ohta T., Maximov T. C., Response of larch root development to annual changes of water conditions in Eastern Siberia, Polar Science, 2016, Vol. 10, No 2, pp. 160–166, DOI: 10.1016/j.polar.2016.04.012.

Tanskanen N., Ilvesniemi H., Spatial distribution of fine roots at ploughed Norway spruce forest sites, Silva Fennica, 2007, Vol. 41, No 1, pp. 45–54, DOI: 10.14214/sf.306.

Tardío G., González‑Ollauri A., Mickovski S. B., A non-invasive preferential root distribution analysis methodology from a slope stability approach, Ecological Engineering, 2016, Vol. 97, pp. 46–57, DOI: 10.1016/j.ecoleng.2016.08.005.

Tatarinov F., Urban J., Čermák J., Application of “clump technique” for root system studies of Quercus robur and Fraxinus excelsior, Forest Ecology and Management, 2008, Vol. 255, No 3–4, pp. 495–505, DOI: 10.1016/j.foreco.2007.09.022.

Teichmann J., Ballani F., van den Boogaart K. G., Generalizations of Matérn’s hard-core point processes, Spatial Statistics, 2013, Vol. 3, pp. 33–53, DOI: 10.1016/j.spasta.2013.02.001.

Terehov G. G., Usoltsev V. A., Morfostruktura nasazhdenij i kornenasyshhennost’ rizosfery kul’tur eli sibirskoj i vtorichnogo listvennogo drevostoja na Srednem Urale kak harakteristika ih konkurentnyh otnoshenij (Morphostructure of plantations and root saturation of the rhizosphere of Siberian spruce and secondary deciduous stands in the Middle Urals as a characteristic of their competitive relations), Hvojnye boreal’noj zony, 2010, Vol. XXVII, No 3–4, pp. 330–335.

Thomas F. M., Bögelein R., Werner W., Interaction between Douglas fir and European beech — Investigations in pure and mixed stands, Forstarchiv, 2015, Vol. 86, No 4, pp. 83–91, DOI: 10.4432/0300-4112-86-83.

Thomas F. M., Hartmann G., Tree rooting patterns and soil water relations of healthy and damaged stands of mature oak (Quercus robur L. and Quercus petraea [Matt.] Liebl.), Plant and Soil, 1998, Vol. 203, pp. 145–158, DOI: 10.1023/A:1004305410905.

Thomas P. A., Stone D., La Porta N., Biological flora of the British Isles: Ulmus glabra, Journal of Ecology, 2018, Vol. 106, No 4, pp. 1724–1766, DOI: 10.1111/1365-2745.12994.

Thorpe H. C., Astrup R., Trowbridge A., Coates K. D., Competition and tree crowns: a neighborhood analysis of three boreal tree species, Forest Ecology and Management, 2010, Vol. 259, No 8, pp. 1586–1596, DOI: 10.1016/j.foreco.2010.01.035.

Thurm E. A., Biber P., Pretzsch H., Stem growth is favored at expenses of root growth in mixed stands and humid conditions for Douglas-fir (Pseudotsuga menziesii) and European beech (Fagus sylvatica), Trees, 2017, Vol. 31, No 1, pp. 349–365, DOI: 10.1007/s00468-016-1512-4.

Tikhonova E. V., Tikhonov G. N., Mozaichnost’ hvojno-shirokolistvennyh lesov Valuevskogo lesoparka (Mosaic pattern of coniferous-deciduous forests of the Valuev forest park), Voprosy lesnoj nauki, 2021, Vol. 4, No 3, ID 88, pp. 52–87, DOI: 10.31509/2658-607x- 202143-88.

Toïgo M., Vallet P., Perot T., Bontemps J.‑D., Piedallu C., Courbaud B., Overyielding in mixed forests decreases with site productivity, Journal of Ecology, 2015, Vol. 103, No 2, pp. 502–512, DOI: 10.1111/1365-2745.12353.

Tomczak A., Jelonek T., Jakubowski M., Modulus of elasticity of twin samples (wet and absolute dry) origin from Scots pine (Pinus sylvestris L.) trees broken by wind, Annals of Warsaw University of Life Sciences — SGGW Forestry and Wood Technology, 2011, Vol. 76, pp. 149–153.

Tran Q. T., Tainar D., Safar M., Reverse k nearest neighbor and reverse farthest neighbor search on spatial networks, [in:] Transactions on large-scale data- and knowledge-centered systems, Hameurlain I., Küng J., Wagner R. (eds.), Springer, 2009, pp. 353–372, DOI: 10.1007/978-3-642-03722-1.

Trémolières M., Schnitzler A., Sánchez‑Pérez J.‑M., Schmitt D., Changes in foliar nutrient content and resorption in Fraxinus excelsior L., Ulmus minor Mill. and Clematis vitalba L. after prevention of floods, Annals of Forest Science, 1999, Vol. 56, No 8, pp. 641–650, DOI: 10.1051/forest:19990802.

Tumenbaeva A. R., Sarsekova D. N., Boranbaj Z., Soderzhanie ugleroda v razlichnyh jelementah fitomassy berjozy povisloj (Betula pendula Roth.) v zeljonom pojase goroda Astany (Carbon content in various elements of the phytomass of silver birch (Betula pendula Roth.) in the green belt of the city of Astana), Mezhdunarodnyj nauchno-issledovatel’skij zhurnal, 2018, No 7 (73), pp. 80–84, DOI: 10.23670/IRJ.2018.73.7.016.

Urban J., Čermák J., Ceulemans R., Above- and below-ground biomass, surface and volume, and stored water in a mature Scots pine stand, European Journal of Forest Research, 2015, Vol. 134, pp. 61–74, DOI: 10.1007/s10342-014-0833-3.

Uri V., Kukumägi M., Aosaar J., Varik M., Becker H., Aun K., Krasnova A., Morozov G., Ostonen I., Mander Ü., Lõhmus K., Rosenvald K., Kriiska K., Soosaar K., The carbon balance of a six-year-old Scots pine (Pinus sylvestris L.) ecosystem estimated by different methods, Forest Ecology and Management, 2019, Vol. 433, pp. 248–262, DOI: 10.1016/j.foreco.2018.11.012.

Uri V., Varik M., Aosaar J., Kanal A., Kukumägi M., Lõhmus K., Biomass production and carbon sequestration in a fertile silver birch (Betula pendula Roth) forest chronosequence, Forest Ecology and Management, 2012, Vol. 267, pp. 117–126, DOI: 10.1016/j.foreco.2011.11.033.

Usoltsev V. A., Fitomassa lesov Severnoj Evrazii: normativy i jelementy geografii (Phytomass of forests of Northern Eurasia: standards and elements of geography), Ekaterinburg: UrO RAN, 2002, 762 p.

Usoltsev V. A., Fitomassa model’nyh derev’ev lesoobrazujushhih porod Evrazii: baza dannyh, klimaticheski obuslovlennaja geografija, taksacionnye normativy (Phytomass of model trees of forest-forming species of Eurasia: database, climatically determined geography, taxation standards), Ekaterinburg: Ural’skij gosudarstvennyj lesotehnicheskij universitet, 2016, 336 p.

Usoltsev V. A., Produkcionnye pokazateli i konkurentnye otnoshenija derev’ev. Issledovanie zavisimostej (Production indicators and competitive relations of trees. Dependency research), Ekaterinburg: UGLTU, 2013b, 553 p.

Usoltsev V. A., Vertikal’no-frakcionnaja struktura fitomassy derev’ev. Issledovanie zakonomernostej (Vertical fractional structure of tree phytomass. The study of patterns), Ekaterinburg: UGLTU, 2013a, 603 p.

Utkin A. I., Ermolova L. S., Utkina I. A., Ploshhad’ poverhnosti lesnyh rastenij: sushhnost’, parametry, ispol’zovanie (Surface area of forest plants: essence, parameters, use), Moscow: Nauka, 2008, 292 p.

Vakurov A. D., Poljakova A. F., Krugovorot azota i mineral’nyh jelementov v nizkoproduktivnyh el’nikah severnoj tajgi (Cycle of nitrogen and mineral elements in low-productive spruce forests of the northern taiga), [in:] Krugovorot himicheskih veshhestv v lesu (Cycle of chemicals in the forest), Moscow: Nauka, 1982a, pp. 20–43.

Vakurov D. A., Poljakova A. F., Krugovorot azota i mineral’nyh jelementov v 35‑letnem osinnike (Cycle of nitrogen and mineral elements in a 35‑year-old aspen forest) [in:] Krugovorot himicheskih veshhestv v lesu (Cycle of chemicals in the forest), Moscow: Nauka, 1982b, pp. 44–54.

van der Hage J. C. H., The horizontal component of solar radiation, Agricultural and Forest Meteorology, 1993, Vol. 67, No 1–2, pp. 79–93, DOI: 10.1016/0168-1923(93)90051-I.

Vergarechea M., del Río M., Gordo J., Martín R., Cubero D., Calama R., Spatio-temporal variation of natural regeneration in Pinus pinea and Pinus pinaster Mediterranean forests in Spain, European Journal of Forest Research, 2019, Vol. 138, pp. 313–326, DOI: 10.1007/s10342-019-01172-8.

Verholanceva L. A., Bobkova K. S., Vlijanie pochvennyh uslovij na kornevye sistemy drevesnyh porod v elovyh nasazhdenijah podzony severnoj tajgi (Influence of soil conditions on the root systems of tree species in spruce plantations of the northern taiga subzone), Syktyvkar, 1972, 56 p.

Veselkin D. V., Distribution of fine roots of coniferous trees over the soil profile under conditions of pollution by emissions from a copper-smelting plant, Russian Journal of Ecology, 2002, Vol. 33, No 4, pp. 231–234, DOI: 10.1023/A:1016208118629.

Vesterdal L., Schmidt I. K., Callesen I., Nilsson L. O., Gundersen P., Carbon and nitrogen in forest floor and mineral soil under six common European tree species, Forest Ecology and Management, 2008, Vol. 255, No 1, pp. 35–48, DOI: 10.1016/j.foreco.2007.08.015.

Viherä‑Aarnio A., Velling P., Growth, wood density and bark thickness of silver birch originating from the Baltic countries and Finland in two Finnish provenance trials, Silva Fennica, 2017, Vol. 51, No 4, ID 7731, DOI: 10.14214/sf.7731.

Vinokurova R. I., Lobanova O. V., Specifichnost’ raspredelenija makrojelementov v organah drevesnyh rastenij elovo-pihtovyh lesov Respubliki Marij El (The specificity of the distribution of macroelements in the organs of woody plants of the spruce-fir forests of the Republic of Mari El), Vestnik Povolzhskogo gosudarstvennogo tehnologicheskogo universiteta. Serija: Les. Jekologija. Prirodopol’zovanie, 2011, No 2, pp. 76–83.

von der Heide‑Spravka K. G., Watson G. W., Directional differences in little-leaf linden (Tilia cordata Mill.) crown development, Arboricultural Journal, 1992, Vol. 16, No 3, pp. 243–252, DOI: 10.1080/03071375.1992.9746922.

Vostochnoevropejskie lesa: istorija v golocene i sovremennost’ (Eastern European forests: history in the Holocene and present), Book. 1, O. V. Smirnova (ed.), Moscow: Nauka, 2004, 479 p.

Vtorova V. N., Osobennosti vertikal’nogo raspredelenija himicheskogo sostava strukturnyh komponentov eli i sosny v Podmoskov’e (Features of the vertical distribution of the chemical composition of the structural components of spruce and pine in the Moscow region) [in:] Kompleksnye biogeocenoticheskie issledovanija v lesah Podmoskov’ja (Comprehensive biogeocenotic research in the forests of the Moscow region), Moscow: Nauka, 1982, pp. 5–20.

Wambsganss J., Beyer F., Freschet G. T., Scherer‑Lorenzen M., Bauhus J., Tree species mixing reduces biomass but increases length of absorptive fine roots in European forests, Journal of Ecology, 2021, Vol. 109, No 7, pp. 2678–2691, DOI: 10.1111/1365-2745.13675.

Wang W., Peng C., Zhang S. Y., Zhou X., Larocque G. R., Kneeshaw D. D., Lei X. Development of TRIPLEX-Management model for simulating the response of forest growth to pre-commercial thinning, Ecological Modelling, 2011, Vol. 222, No 14, pp. 2249–2261, DOI: 10.1016/j.ecolmodel.2010.09.019.

Watt A. S., Pattern and process in the plant community, Journal of Ecology, 1947, Vol. 35, No 1/2, pp. 1–22, DOI: 10.2307/2256497.

Way D. A., Domec J.‑C., Jackson R. B., Elevated growth temperatures alter hydraulic characteristics in trembling aspen (Populus tremuloides) seedlings: Implications for tree drought tolerance, Plant, Cell & Environment, 2013, Vol. 36, No 1, pp. 103–115, DOI: 10.1111/j.1365-3040.2012.02557.x.

Weemstra M., Sterck F. J., Visser E. J. W., Kuyper T. W., Goudzwaard L., Mommer L., Fine-root trait plasticity of beech (Fagus sylvatica) and spruce (Picea abies) forests on two contrasting soils, Plant and Soil, 2017, Vol. 415, No 1–2, pp. 175–188, DOI: 10.1007/s11104-016-3148-y.

Widlowski J.‑L., Verstraete M., Pinty B., Gobron N., Allometric relationships of selected European tree species. Technical Report EUR 20855 EN. EC Joint Research Centre, 2003, 61 p.

Wiegand T., Martínez I., Huth A., Recruitment in tropical tree species: revealing complex spatial patterns, The American Naturalist, 2009, Vol. 174, No 4, pp. E106–E140, DOI: 10.1086/605368.

Williams T. G., Flanagan L. B., Effect of changes in water content on photosynthesis, transpiration and discrimination against 13CO2 and C18O16O in Pleurozium and Sphagnum, Oecologia, 1996, Vol. 108, No 1, pp. 38–46, DOI: 10.1007/BF00333212.

Withington J. M., Reich P. B., Oleksyn J., Eissenstat D. M., Comparisons of structure and life span in roots and leaves among temperate trees, Ecological Monographs, 2006, Vol. 76, No 3, pp. 381–397, DOI: 10.1890/0012-9615(2006)076[0381:COSALS]2.0.CO;2.

WRB, 2015, World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No 106, FAO, Rome.

Wullschleger S. D., Hanson P. J., Sensitivity of sapling and mature-tree water use to altered precipitation regimes, [in:] North American temperate deciduous forest responses to changing precipitation regimes. Hanson P. J., Wullschleger S. D. (eds.), Springer, 2003, pp. 87–98, DOI: 10.1007/978-1-4613-0021-2.

Yastrebov A. B., Different types of heterogeneity and plant competition in monospecific stands, Oikos, 1996, Vol. 75, No 1, pp. 89–97, DOI: 10.2307/3546325.

Yen Y. C., Effective thermal conductivity of ventilated snow, Journal of Geophysical Research, 1962, Vol. 67, No 3, pp. 1091–1098, DOI: 10.1029/JZ067i003p01091.

Yen Y. C., Review of thermal properties of snow, ice, and sea ice. Cold Regions Research and Engineering Laboratory, Report 81‑10. US Army, Corps of Engineers, 1981, 35 p.

Yu X., Wu Z., Jiang W., Guo X., Predicting daily photosynthetically active radiation from global solar radiation in the Contiguous United States, Energy Conversion and Management, 2015, Vol. 89, pp. 71–82, DOI: 10.1016/j.enconman.2014.09.038.

Yuan Z. Y., Chen H. Y. H., Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: literature review and meta-analyses, Critical Reviews in Plant Sciences, 2010, Vol. 29, No 4, pp. 204–221, DOI: 10.1080/07352689.2010.483579.

Zadworny M., McCormack M. L., Rawlik K., Jagodziński A. M., Seasonal variation in chemistry, but not morphology, in roots of Quercus robur growing in different soil types, Tree Physiology, 2015, Vol. 35, No 6, pp. 644–652, DOI: 10.1093/treephys/tpv018.

Zagirova S. V., Structure and CO2 exchange in the needles of Pinus sylvestris and Abies sibirica, Russian Journal of Plant Physiology, 2001, Vol. 48, No 1, pp. 23–28, DOI: 10.1023/A:1009086211938.

Zajączkowska U., Kozakiewicz P., Interaction between secondary phloem and xylem in gravitropic reaction of lateral branches of Tilia cordata Mill. trees, Holzforschung, 2016, Vol. 70, No 10, pp. 993–1002, DOI: 10.1515/hf-2015-0230.

Zhang C., Stratopoulos L. M. F., Pretzsch H., Rötzer T., How do Tilia cordata Greenspire trees cope with drought stress regarding their biomass allocation and ecosystem services?, Forests, 2019, Vol. 10, No 8, ID 676, DOI: 10.3390/f10080676.

Zhang S.‑Y., Owoundi R. E., Nepveu G., Mothe F., Dhôte J.‑F., Modelling wood density in European oak (Quercus petraea and Quercus robur) and simulating the silvicultural influence, Canadian Journal of Forest Research, 1993, Vol. 23, No 12, pp. 2587–2593, DOI: 10.1139/x93-320.

Zheldak V. I., Atrohin V. G., Lesovodstvo, ch. I. (Forestry, part I.), Moscow: VNIILM, 2002, 336 p.

Zheng D., Hunt Jr E. R., Running S. W., A daily soil temperature model based on air temperature and precipitation for continental applications, Climate Research, 1993, Vol. 2, No 3, pp. 183–191, DOI: 10.3354/cr002183.

Zhou X., Peng C., Dang Q.‑L., Sun J., Wu H., Hua D., Simulating carbon exchange in Canadian boreal forests. I. Model structure, validation, and sensitivity analysis, Ecological Modelling, 2008, Vol. 219, No 3–4, pp. 287–299, DOI: 10.1016/j.ecolmodel.2008.07.011.

Zhu G.‑F., Li X., Su Y.‑H., Lu L., Huang C.‑L., Niinemets Ü., Seasonal fluctuations and temperature dependence in photosynthetic parameters and stomatal conductance at the leaf scale of Populus euphratica Oliv., Tree Physiology, 2011, Vol. 31, No 2, pp. 178–195, DOI: 10.1093/treephys/tpr005.

Zhu Y., Zhang H., Gao Y., Dilixiati B., Ding C., Yang Y., Analysis on carbon content factors of Larix sibirica Ledeb. in Xinjiang, Journal of Nanjing Forestry University, 2017, Vol. 60, No 3, pp. 198–202.

Zhukova L. A., Koncepcija fitogennyh polej i sovremennye aspekty ih izuchenija (The concept of phytogenic fields and modern aspects of their study), Izvestija Samarskogo nauchnogo centra Rossijskoj akademii nauk, 2012, Vol. 14, No 1–6, pp. 1462–1465.