• DOI 10.31509/2658-607x-202252-116
  • УДК 630*907.1

IMPACT OF SILVICULTURAL PRACTICES ON SOIL CARBON: A REVIEW

D.N. Tebenkova, D. V. Gichan, Yu. N. Gagarin

 

Center for Forest Ecology and Productivity of the Russian Academy of Sciences

Profsoyuznaya st. 84/32 bldg. 14, Moscow, 117997, Russian Federation

 

E-mail: tebenkova.dn@gmail.com

Received: 20.11.2022

Revised: 18.12.2022

Accepted: 20.12.2022

 

The paper provides a review of Russian and foreign articles regarding studying the impact of silvicultural practices on the soil carbon pool to assess the effectiveness of forest carbon projects. Analyzing the works allowed us to conclude that silvicultural practices affect the content of soil carbon through a change in the rate of influx and decomposition of organic matter and, as a result, affect the redistribution of carbon in the soil profile. High-intensity felling, including clear felling, removal of logging residues, damage to the ground cover when planting forest crops, and the development of monocultures can negatively affect the soil carbon pool. On the contrary, selective and low-intensity thinning, leaving logging residues, and planting mixed forest stands, especially on abandoned agricultural lands, proved to be promising forest management practices that contribute to the accumulation and conservation of soil carbon.

 Keywords: carbon, soil, forest carbon projects, silvicultural practices

REFERENCES

Achat D. L., Fortin M., Landmann G., Ringeval B., Augusto L., Forest soil carbon is threatened by intensive biomass harvesting, Scientific reports, 2015, Vol. 5, No 1, pp. 1–10.

Akkumuljacija ugleroda v lesnyh pochvah i sukcessionnyj status lesov (Carbon accumulation in forest soils and the successional status of forests) / Pod red. Lukinoj N. V. Moscow: KMK, 2018, 232 p.

Atmadja S., Verchot L., A review of the state of research, policies and strategies in addressing leakage from reducing emissions from deforestation and forest degradation (REDD+), Mitigation and Adaptation Strategies for Global Change, 2012, No 17(3), pp. 311–336.

Aukland L., Costa P. M., Brown S. A., Conceptual framework and its application for addressing leakage: the case of avoided deforestation, Climate Policy, 2003, No 3(2), pp. 123–136.

Behrendt H., Dannowski R., Nutrients and heavy metals in the Odra River System, Germany: Weissensee Verlag Publ, 2007, 337 p.

Boča A., Van Miegroet H., Gruselle M. C., Forest overstory effect on soil organic carbon storage: a meta-analysis, Soil Science Society of America Journal, 2014, Vol. 78, No S1, pp. 35–47.

Bravo–Oviedo A., Ruiz–Peinado R., Modrego P., Alonso R., Montero G., Forest thinning impact on carbon stock and soil condition in Southern European populations of P. sylvestris L, Forest Ecology and Management, 2015, Vol. 357, pp. 259–267.

Byhovec S. S., Komarov A. S., Prostoj statisticheskij imitator klimata pochvy s mesjachnym shagom (Simple statistical Soil Climate Simulator with monthly increments), Pochvovedenie, 2002, No 4, pp. 443–452.

Cardenas E., Kranabetter J. M., Hope G., Maas K. R., Hallam S., Mohn W. W., Forest harvesting reduces the soil metagenomic potential for biomass decomposition, The ISME Journal, 2015, Vol. 9, No 11, pp. 2465–2476.

Carlyle J. C., Organic carbon in forested sandy soils: properties, processes, and the impact of forest management, New Zealand Journal of Forestry Science, 1993, Vol. 23, No 3, pp. 390–402.

Chertov O., Komarov A., Shaw C., Bykhovets S., Frolov P., Shanin V., Grabarnik P., Priputina I., Zubkova E., Shashkov M., Romul_Hum—A model of soil organic matter formation coupling with soil biota activity. II. Parameterisation of the soil food web biota activity, Ecological Modelling, 2017, Vol. 345, pp. 125–139.

Chertov O., Shaw C., Shashkov M., Komarov A., Bykhovets S., Shanin, V., Grabarnik P., Frolov, P., Priputina I., Kalinina O., Zubkova E., Romul_Hum model of soil organic matter formation coupled with soil biota activity. III. Parameterisation of earthworm activity, Ecological Modelling, 2017, Vol. 345, pp. 140–149.

Chestnyh O. V., Grabovskij V. I., Zamolodchikov D. G., Ocenka zapasov pochvennogo ugleroda lesnyh rajonov Rossii s ispol’zovaniem baz dannyh pochvennyh harakteristik (Assessment of soil carbon reserves in Russian forest areas using soil characteristics databases), Lesovedenie, 2022, No 3, pp. 227–238.

Christophel D., Höllerl S., Prietzel J., Steffens M., Long-term development of soil organic carbon and nitrogen stocks after shelterwood- and clear-cutting in a mountain forest in the Bavarian Limestone Alps, European Journal of Forest Research, 2015, Vol. 134, No 4, pp. 623–640.

Chumachenko S. I., Shanin V. N., Mitrofanov E. M., Lebedev S. V., Frolov P. V., Kondrat’ev S. A., Shmakova M. V., Lukina N. V., Teben’kova D. N., Hanina L. G., Grabarnik P. Ja., Chertov O. G. Bobrovskij M. V., RUFOSS — programmnyj modul’ integracii imitacionnyh modelej dlja ocenki vzaimodejstvij mezhdu lesnymi jekosistemnymi uslugami (RUFOSS is a software module for integrating simulation models to assess interactions between forest ecosystem services) Svidetel’stvo No 2020666245.

Chumachenko S. I., Korotkov V. N., Palenova M. M., Politov D., Simulation modeling of long-term stand dynamics at different scenarios of forest management for coniferous–broad-leaved forests, Ecological Modelling, 2003, Vol. 170, pp. 345–362.

Chumachenko S. I., Bazovaja model’ dinamiki mnogovidovogo raznovozrastnogo lesnogo cenoza (The basic model of the dynamics of a multi-species multi-age forest cenosis), Voprosy jekologii i modelirovanija lesnyh jekosistem (Issues of ecology and modeling of forest ecosystems), Proc. Conf., Vol. 248, Moscow, 1993, pp. 147–180.

Clarke N., Gundersen P., Jönsson-Belyazid U., Kjønaas O. J., Persson T., Sigurdsson B. D., Vesterdal L., Influence of different tree-harvesting intensities on forest soil carbon stocks in boreal and northern temperate forest ecosystems, Forest Ecology and Management, 2015, Vol. 351, pp. 9–19.

Córdova S. C., Olk D. C., Dietzel R. N., Mueller K. E., Archontouilis S. V., Castella M. J., Plant litter quality affects the accumulation rate, composition, and stability of mineral-associated soil organic matter, Soil Biology and Biochemistry, 2018, Vol. 125, pp. 115–124.

Cotrufo M. F., Wallenstein M. D., Boot C. M., Denef K., Paul E., The Microbial Efficiency Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Global change biology, 2013, Vol. 19, No 4, pp. 988–995.

Craig M. E., Turner B. L., Liang C., Clay K., Johnson D. J., Phillips R. P., Tree mycorrhizal type predicts within site variability in the storage and distribution of soil organic matter, Global change biology, 2018, Vol. 24, No 8, pp. 3317–3330.

De Coninck H., Revi A., Babiker M., Bertoldi P., Buckeridge M., Cartwright A., Sugiyama T., Strengthening and implementing the global response, Global warming of 1.5 C: Summary for policy makers. — IPCC–The Intergovernmental Panel on Climate Change, 2018, pp. 313–443.

Devine W. D., Harrington C. A., Influence of harvest residues and vegetation on microsite soil and air temperatures in a young conifer plantation, Agricultural and Forest Meteorology, 2007, Vol. 145, No 1–2, pp. 125–138.

Donofrio S., Maguire P., Daley Ch., Calderon C., Lin K., Forest Trends’ Ecosystem Marketplace The Art of Integrity: State of Voluntary Carbon Markets, Q3 Insights Briefing. Washington DC, Forest Trends Association, 2022, p. 21.

Dymov A. A., Vlijanie sploshnyh rubok v boreal’nyh lesah Rossii na pochvy (obzor) (The effect of continuous logging in boreal forests of Russia on soils (review)), Pochvovedenie, 2017, No 7, pp. 787–798.

Dymov A. A., Starcev V. V., Izmenenie temperaturnogo rezhima podzolistyh pochv v processe estestvennogo lesovozobnovlenija posle sploshnyh rubok (Changes in the temperature regime of podzolic soils in the process of natural reforestation after continuous logging, Pochvovedenie, 2016, No 5, pp. 599–608.

Fedorov B. G., Rossijskij uglerodnyj balans: monografija (Russian carbon balance: monograph), Moscow: Nauchnyj konsul’tant, 2017, 82 p.

FIA. Forest Inventory Analysis National Program, USFS, USDA Forest Service, 2020, available at: https://www.fia.fs.fed.us./ (June 24, 2022).

Finér L., Domisch T., Dawud S. M., Raulund–Rasmussen K., Vesterdal L., Bouriaud O., Valladares F., Conifer proportion explains fine root biomass more than tree species diversity and site factors in major European forest types, Forest Ecology and Management, 2017, Vol. 406, pp. 330–350.

Fischer H., Bens O., Hüttl R., Veränderung von Humusform,–vorrat und–verteilung im Zuge von Waldumbau–Maßnahmen im Nordostdeutschen Tiefland, Forstwissenschaftliches Centralblatt vereinigt mit Tharandter forstliches Jahrbuch, 2002, Vol. 121, No 6, pp. 322–334.

Fröberg M., Hansson K., Kleja D. B., Alavi Gh., Dissolved organic carbon and nitrogen leaching from Scots pine, Norway spruce and silver birch stands in southern Sweden, Forest ecology and management, 2011, Vol. 262, No 9, pp. 1742–1747.

Gamfeldt L., Snäll T., Bagchi R., Jonsson M., Gustafsson L., Kjellander P., Bengtsson J., Higher levels of multiple ecosystem services are found in forests with more tree species, Nature communications, 2013, Vol. 4, No 1, pp. 1–8.

Georgiadis P., Vesterdal L., Stupak I., Raulund‐Rasmussen K., Accumulation of soil organic carbon after cropland conversion to short rotation willow and poplar, GCB Bioenergy, 2017, Vol. 9, No 8, pp. 1390–1401.

Gillingham K., Stock J. H., The Cost of Reducing Greenhouse Gas Emissions, Journal of Economic Perspectives, 2018, No 32 (4), pp. 53–72.

Gross C. D., James J. N., Turnblom E. C., Harrison R. B., Thinning treatments reduce deep soil carbon and nitrogen stocks in a coastal pacific northwest forest, Forests, 2018, Vol. 9, No 5, Article 238.

Guo L. B., Gifford R. M., Soil carbon stocks and land use change: a meta-analysis, Global change biology, 2002, Vol. 8, No 4, pp. 345–360.

Hanina L. G., Bobrovskij M. V., Komarov A. S., Mihajlov A. V., Byhovec S. S., Luk’janov A. M., Modelirovanie dinamiki raznoobrazija lesnogo napochvennogo pokrova (Modeling the dynamics of diversity of forest ground cover), Lesovedenie, 2006, No 1, pp. 70–80.

Holden S. R., Treseder K. K., A meta-analysis of soil microbial biomass responses to forest disturbances, Frontiers in microbiology, 2013, Vol. 4, Article 163.

Hoffmann T., Schlummer M., Notebaert B., Verstraeten G., Korup O., Carbon burial in soil sediments from Holocene agricultural erosion, Central Europe, Global Biogeochemical Cycles, 2013, Vol. 27, No 3, pp. 828–835.

Hoover C. M., Management impacts on forest floor and soil organic carbon in northern temperate forests of the US, Carbon balance and management, 2011, Vol. 6, No 1, pp. 1–8.

Huang L. Liu J., Shao Q., Xu X., Carbon sequestration by forestation across China: Past, present, and future, Renewable and Sustainable Energy Reviews, 2012, Vol. 16, No 2, pp. 1291–1299.

Hyvönen R., Kaarakka L., Leppälammi-Kujansuu J., Olsson B. A., Palviainen M., Vegerfors-Persson B., Helmisaari H. S., Effects of stump harvesting on soil C and N stocks and vegetation 8–13 years after clear-cutting, Forest Ecology and Management, 2016, Vol. 371, pp. 23–32.

James J., Harrison R., The effect of harvest on forest soil carbon: A meta–analysis, Forests, 2016, Vol. 7, No 12, Article 308.

Johnson K., Scatena F. N., Pan Y., Short- and long-term responses of total soil organic carbon to harvesting in a northern hardwood forest, Forest Ecology and Management, 2010, Vol. 259, pp. 1262–1267.

Johnson D. W., Curtis P. S., Effects of forest management on soil C and N storage: meta-analysis, Forest ecology and management, 2001, Vol. 140, No 2–3, pp. 227–238.

Jurevics A., Peichl M., Olsson B. A., Strömgren M., Egnell G., Slash and stump harvest have no general impact on soil and tree biomass C pools after 32–39 years, Forest Ecology and Management, 2016, Vol. 371, pp. 33–41.

Karpechko Ju. V., Vlijanie rubok na stok s lesopokrytoj chasti vodosbora Onezhskogo ozera (The effect of logging on runoff from the forested part of the Onega Lake catchment), Trudy KarNC RAN, Petrozavodsk, No 2016, pp. 13–20.

Khanina L., Bobrovsky M., Komarov A., Mikhajlov A., Modeling dynamics of forest ground vegetation diversity under different forest management regimes, Forest Ecology and Management, 2007, Vol. 248, pp. 80–94.

Khanina L. G., Bobrovsky M. V., Komarov A. S., Shanin V. N., Bykhovets S. S., Model predictions of effects of different climate change scenarios on species diversity with or without management intervention, repeated thinning, for a site in Central European Russia, [in:] Nitrogen Deposition, Critical Loads and Biodiversity, Springer, 2014, pp. 173–182.

Kalinina L., Chertov O., Frolov P., Goryachkin S., Kuner P., Küper J., Kurganova I., Lopes de Gerenyu V., Lyuri D., Rusakov A., Kuzyakov Y., Giani L., Alteration process during the post-agricultural restoration of Luvisols of the temperate broad-leaved forest in Russia, Catena, 2018, Vol. 171, pp. 602–612.

Katzensteiner K., Effects of harvesting on nutrient leaching in a Norway spruce (Picea abies Karst.) ecosystem on a Lithic Leptosol in the Northern Limestone Alps, Plant and Soil, 2003, Vol. 250, No 1, pp. 59–73.

Keller A. B., Brzostek E. R., Craig M. E., Fisher J. B., Phillips R. P., Root‐derived inputs are major contributors to soil carbon in temperate forests, but vary by mycorrhizal type, Ecology Letters, 2021, Vol. 24, No 4, pp. 626–635.

Kim S., Han S. H., Li G., Yoon T. K., Lee S. T., Kim C., Son Y., Effects of thinning intensity on nutrient concentration and enzyme activity in Larix kaempferi forest soils, Journal of Ecology and Environment, 2016, Vol. 40, No 1, pp. 1–7.

Klein D., Fuentes J. P., Schmidt A., Schmidt H., Schulte A., Soil organic C as affected by silvicultural and exploitative interventions in Nothofagus pumilio forests of the Chilean Patagonia, Forest Ecology and Management, 2008, Vol. 255, No 10, pp. 3549–3555.

Kohout P., Charvátová M., Štursová M., Mašínová T., Tomšovský M., Baldrian P., Clearcutting alters decomposition processes and initiates complex restructuring of fungal communities in soil and tree roots, The ISME journal, 2018, Vol. 12, No 3, pp. 692–703.

Komarov A., Chertov O., Bykhovets S., Shaw C., Nadporozhskaya M., Frolov P., Shashkov M., Shanin V., Grabarnik P., Priputina I., Zubkova E., Romul_Hum model of soil organic matter formation coupled with soil biota activity. I. Problem formulation, model description, and testing, Ecological Modelling, 2017, Vol. 345, pp. 113–124.

Kondrat’ev S. A., Formirovanie vneshnej nagruzki na vodoemy: problemy modelirovanija (Formation of external load on reservoirs: modeling problems), Saint Petersburg: Nauka, 2007, 255 p.

Kondrat’ev S. A., Kazmina M. V., Shmakova M. V., Markova E. G., Metod rascheta biogennoj nagruzki na vodnye ob’ekty (Method of calculation of biogenic load on water bodies), Regional’naja jekologija, 2011, No 3–4, pp. 50–59.

Kondrat’ev S. A., Karpechko Ju. V., Shmakova M. V., Rasulova A. M., Rodionov V. Z., Opyt jeksperimental’nyh issledovanij i matematicheskogo modelirovanija vozdejstvij vyrubki lesa i posledujushhego lesovosstanovlenija na stok i vynos himicheskih veshhestv s lesnyh vodosborov (Experience of experimental research and mathematical modeling of the effects of deforestation and subsequent reforestation on the runoff and removal of chemicals from forest catchments), Regional’naja jekologija, 2019, No 1 (55), pp. 25–53.

Kondrat’ev S. A., Shmakova M. V., Izuchenie formirovanija stoka s rechnyh vodosborov metodami matematicheskogo modelirovanija (na primere bassejna Ladozhskogo ozera) (Studying the formation of runoff from river catchments by mathematical modeling methods (on the example of the Ladoga Lake basin)), Sbornik nauchnyh trudov 12 s”ezda Russkogo geograficheskogo obshchestva (Collection of scientific papers of the 12th Congress of the Russian Geographical Society), Saint Petersburg: Nauka, 2005, Vol. 6, pp. 99–104.

Kuznecova A. I., Gornov A. V., Gornova M. V., Teben’kova D. N., Nikitina A. D., Kuznecov V. A., Ocenka vynosa ugleroda s pochvennymi vodami v dominirujushhih tipah lesa Brjanskogo Poles’ja (Assessment of carbon removal from soil waters in the dominant forest types of the Bryansk Polesie), Pochvovednie, 2022, No 9, pp. 1086–1097.

Kuznetsova A. I., Geraskina A. P., Lukina N. V., Smirnov V. E., Tikhonova E. V., Shevchenko N. E., Gornov A. V., Ruchinskaya E. V., Tebenkova D. N., Linking vegetation, soil carbon stocks, and earthworms in upland coniferous–broadleaf forests, Forests, 2021, No 12 (9), Article 1179.

Kuznecova A. I., Lukina N. V., Gornov A. V., Gornova M. V., Tihonova E. V., Smirnov V. Je., Danilova M. A., Teben’kova D. N., Braslavskaja T. Ju., Kuznecov V. A., Tkachenko Ju. N., Genikova N. V., Zapasy ugleroda v peschanyh pochvah sosnovyh lesov na zapade Rossii (Carbon reserves in sandy soils of pine forests in western Russia), Pochvovedenie, 2020, No 8, pp. 959–969.

Kreutzer K., Deschu E., Hösl G., Vergleichende Untersuchungen uber den Ein-fluβ von Fichte (Picea abies [L.] Karst.) und Buche (Fagus sylvatica L.) auf die Sickerwasserqualität, Forstwissenschaftliches Centralblatt, 1986, Vol. 105, pp. 364–371.

Kulmala L., Aaltonen H., Berninger F., Kieloaho A. J., Levula J., Bäck J., Pumpanen J., Changes in biogeochemistry and carbon fluxes in a boreal forest after the clear-cutting and partial burning of slash, Agricultural and Forest Meteorology, 2014, Vol. 188, pp. 33–44

Laganiere J., Angers D. A., Pare D., Carbon accumulation in agricultural soils after afforestation: a meta-analysis, Global change biology, 2010, Vol. 16, No 1, pp. 439–453.

Lee J. G., Lee D. H., Jeong J. Y., Lee S. G., Han S. H., Kim S. J., Kim H. J., The Effects of Stand Density Control on Carbon Cycle in Chamaecyparis obtusa (Siebold and Zucc.) Endl., Forests, Forests, 2023, Vol. 14 (2), Article 217.

Lemus R., Lal R., Bioenergy crops and carbon sequestration, Critical Reviews in Plant Sciences, 2005, Vol. 24, No 1, pp. 1–21.

Li Y., Bruelheide H., Scholten T., Schmid B., Sun Z., Zhang N., Bu W., Liu X., Ma K., Early positive effects of tree species richness on soil organic carbon accumulation in a large-scale forest biodiversity experiment, Journal of Plant Ecology, 2019, Vol. 12, No 5, pp. 882–893.

Lippke B., Puettmann M., Oneil E., Oliver C. D., The plant a trillion trees campaign to reduce global warming — Fleshing out the concept, Journal of Sustainable Forestry, 2021, Vol. 40. No 1, pp. 1–31.

Lippke B., Puettmann, M. E., Oneil, E., CORRIM Tech Note 1. Effective uses of forest derived products to reduce carbon emissions, The Consortium for Research on Renewable Industrial Materials, 2020, available at: https://corrim.org/use–of–forest–products–to–reduce–carbon–emissions/ (June 24, 2022).

Lukina N. V. Geraskina A. P., Kuznecova A. I., Smirnov V. Je., Gornov A. V., Shevchenko N. E., Tihonova E. V., Teben’kova D. N., Basova E. V., Funkcional’naja klassifikacija lesov: aktual’nost’ i podhody k razrabotke (Functional classification of forests: relevance and approaches to development), Lesovedenie, 2021, No 6, pp. 566–580.

Mallik A. U., Hu D., Soil respiration following site preparation treatments in boreal mixedwood forest, Forest Ecology and Management, 1997, Vol. 97, No 3, pp. 265–275.

Mayer M., Sandén H., Rewald B., Godbold D. L., Katzensteiner K., Increase in heterotrophic soil respiration by temperature drives decline in soil organic carbon stocks after forest windthrow in a mountainous ecosystem, Functional Ecology, 2017, Vol. 31, No 5, pp. 1163–1172.

Michaelowa A., Hermwille L., Obergassel W., Butzengeiger S., Additionality revisited: guarding the integrity of market mechanisms under the Paris Agreement, Climate Policy, 2019, Vol. 19, No 10, pp. 1211–1224.

Morris D. M., Hazlett P. W., Fleming R. L., Kwiaton M. M., Hawdon L. A., Leblanc J. D., Weldon T. P., Effects of Biomass Removal Levels on Soil Carbon and Nutrient Reserves in Conifer Dominated, Coarse Textured Sites in Northern Ontario: 20 Year Results, Soil Science Society of America Journal, 2019, Vol. 83, pp. 116–132.

Mushinski R. M., Gentry T. J., Boutton T. W., Forest organic matter removal leads to long-term reductions in bacterial and fungal abundance, Applied Soil Ecology, 2019, Vol. 137, pp. 106–110.

Nave L. E., Domke G. M., Hofmeister K. L., Mishra U., Perry C. H., Walters B. F., Swanston C. W., Reforestation can sequester two petagrams of carbon in US topsoils in a century, Proceedings of the National Academy of Sciences, 2018, Vol. 115, No 11, pp. 2776–2781.

Nave L. E., Vance E. D., Swanston C. W., Curtis P. S., Harvest impacts on soil carbon storage in temperate forests, Forest Ecology and Management, 2010, Vol. 259, No 5, pp. 857–866.

Noormets A., Epron D., Domec J. C., McNulty S. G., Fox T., Sun G., King J. S., Effects of forest management on productivity and carbon sequestration: A review and hypothesis, Forest Ecology and Management, 2015, Vol. 355, pp. 124–140.

Oliver C. D., Nassar N. T., Lippke B. R., McCarter J. B., Carbon, fossil fuel, and biodiversity mitigation with wood and forests, Journal of Sustainable Forestry, 2014, Vol. 33, No 3, pp. 248–275.

Oneil E. E., Lippke B. R., Integrating products, emission offsets, and wildfire into carbon assessments of Inland Northwest forests, Wood and Fiber Science, 2010, Vol. 42, pp. 144–164.

Pan Y., Birdsey R. A., Fang J., Houghton R., Kauppi P. E., Kurz W. A., Hayes D. A., Large and persistent carbon sink in the world’s forests, Science, 2011, Vol. 333, No 6045, pp. 988–993.

Pang X., Hu B., Bao W., de Oliveira Vargas T., Tian G., Effect of thinning-induced gap size on soil CO2 efflux in a reforested spruce forest in the eastern Tibetan Plateau, Agricultural and forest meteorology, 2016, Vol. 220, pp. 1–9.

Parizhskoe soglashenie, 2015, available at: https://golnk.ru/oMxvm, (February 08, 2022)

Paul K. I., Polglase P. J., Nyakuengama J. G., Khanna P. K., Change in soil carbon following afforestation, Forest ecology and management, 2002, Vol. 168, No 1–3, pp. 241–257.

Persson T., Lenoir L., Vegerfors B., Long-term effects of stump harvesting and site preparation on pools and fluxes of soil carbon and nitrogen in central Sweden, Scandinavian Journal of Forest Research, 2017, Vol. 32, No 3, pp. 222–229.

Pötzelsberger E., Hasenauer H., Soil change after 50 years of converting Norway spruce dominated age class forests into single tree selection forests, Forest Ecology and Management, 2015, Vol. 338, pp. 176–182.

Prescott C. E., Blevins L. L., Staley C. L., Effects of clear–cutting on decomposition rates of litter and forest floor in forests of British Columbia, Canadian Journal of Forest Research, 2000, Vol. 30, No 11, pp. 1751–1757.

Pretzsch H., Canopy space filling and tree crown morphology in mixed-pecies stands compared with monocultures, Forest Ecology and Management, 2014, Vol. 327, pp. 251–264.

Pretzsch H., Diversity and productivity in forests: evidence from long-term experimental plots, Forest diversity and function, Springer, Berlin, Heidelberg, 2005, pp. 41–64.

Priputina I. V., Frolova G. G., Shanin V. N., Vybor optimal’nyh shem posadki lesnyh kul’tur: komp’juternyj jeksperiment (Choosing optimal planting schemes for forest crops: a computer experiment), Komp’juternye issledovanija i modelirovanie, 2016, Vol. 8, No 2, pp. 333–343.

Puhlick J. J., Fernandez I. J., Weiskittel A. R., Evaluation of forest management effects on the mineral soil carbon pool of a lowland, mixed–species forest in Maine, USA, Canadian journal of soil science, 2016, Vol. 96, No 2, pp. 207–218.

Pumpanen J., Westman C. J., Ilvesniemi H., Soil CO2 efflux from a podzolic forest soil before and after forest clear-cutting and site preparation, Boreal Environment Research, 2004, Vol. 9, pp. 199–212.

Resh S. C., Binkley D., Parrotta J. A., Greater soil carbon sequestration under nitrogen-fixing trees compared with Eucalyptus species, Ecosystems, 2002, Vol. 5, No 3, pp. 217–231.

Rezoljucija po itogam nauchnyh debatov “Lesnye klimaticheskie proekty v Rossii”, Moskow, 2021, 19 Oсtober, available at: https://goo.su/ITAB, (February 08, 2022).

Richter D. D., Markewitz D., Trumbore S. E., Wells, C. G., Rapid accumulation and turnover of soil carbon in a re-establishing forest, Nature, 1999, Vol. 400, No 6739, pp. 56–58.

Rytter R. M., Rytter L., Changes in soil chemistry in an afforestation experiment with five tree species, Plant and Soil, 2020, No 456, pp. 425–437.

Rytter R. M., The potential of willow and poplar plantations as carbon sinks in Sweden, Biomass and Bioenergy, 2012, Vol. 36, pp. 86–95.

Schmidt M. G., Macdonald S. E., Rothwell R. L., Impacts of harvesting and mechanical site preparation on soil chemical properties of mixed-wood boreal forest sites in Alberta, Canadian Journal of Soil Science, 1996, Vol. 76, No 4, pp. 531–540.

Shanin V. N., Frolov P. V., Korotkov V. N., Vsegda li iskusstvennoe lesovosstanovlenie mozhet byt’ lesoklimaticheskim proektom (Can artificial reforestation always be a forest-climatic project), Voprosy lesnoj nauki, 2022, Vol. 5, No 2, pp. 103–139.

Shanin V., Juutinen A., Ahtikoski A., Frolov P., Chertov O., Rämö J., Lehtonen A., Laiho R., Mäkiranta P., Nieminen M., Laurén A., Sarkkola S., Penttilä T., Ťupek B., Mäkipää R., Simulation modelling of greenhouse gas balance in continuous-cover forestry of Norway spruce stands on nutrient–rich drained peatlands, Forest Ecology and Management, 2021, Vol. 496, Article 119479.

Special’nye lesoklimaticheskie proekty mogut sposobstvovat’ snizheniju uglerodnogo naloga, kotoryj Evrosojuz planiruet vvesti v 2025 godu (Special forest-climatic projects can contribute to reducing the carbon tax, which the European Union plans to introduce in 2025), 2021, available at: http://www.igras.ru/news/2719 (February 07, 2022).

Streck C., REDD+ and leakage: debunking myths and promoting integrated solutions, Climate Policy, 2021, Vol. 21 (6), pp. 843–52.

Strömgren M., Egnell G., Olsson B. A., Carbon stocks in four forest stands in Sweden 25 years after harvesting of slash and stumps, Forest Ecology and Management, 2013, Vol. 290, pp. 59–66.

Strukelj M., Brais S., Paré D., Nine-year changes in carbon dynamics following different intensities of harvesting in boreal aspen stands, European journal of forest research, 2015, No 134, pp. 737–754.

Tang J., Bolstad P. V., Martin J. G., Soil carbon fluxes and stocks in a Great Lakes forest chronosequence, Global Change Biology, 2009, Vol. 15, No 1, pp. 145–155.

The greenhouse gas protocol. The land use, land-use change, and forestry guidance for GHG project accounting, Washington: Word Resource Institute, 2006, 97 p., available at: https://goo.su/puTzd (September 08, 2022).

Thiffault E., Hannam K. D., Paré D., Titus B. D., Hazlett P. W., Maynard D. G., Brais S., Effects of forest biomass harvesting on soil productivity in boreal and temperate forests—A review, Environmental Reviews, 2011, Vol. 19, pp. 278–309.

Transformacija jekosistem severa v zone intensivnoj zagotovki drevesiny (Transformation of ecosystems of the North in the zone of intensive wood harvesting), Tr. Komi nauchnogo centra UrO RAN, Syktyvkar, 1996. No 154, 160 p.

Vanguelova E. I., Pitman R., Benham S., Perks M., Morison J. I., Impact of tree stump harvesting on soil carbon and nutrients and second rotation tree growth in Mid–Wales, UK, Open Journal of Forestry, 2017, Vol. 7, No 1, Article ID 73642.

Verified Carbon Standard, v 4.2, Issued: 2019, 19 September, available at: https://goo.su/x0mw (June 24, 2022).

Vesterdal L., Dalsgaard M., Felby C., Raulund-Rasmussen K., Jørgensen B. B., Effects of thinning and soil properties on accumulation of carbon, nitrogen and phosphorus in the forest floor of Norway spruce stands, Forest Ecology and Management, 1995, Vol. 77, No 1–3, pp. 1–10.

Vesterdal L., Raulund–Rasmussen K., Forest floor chemistry under seven tree species along a soil fertility gradient, Canadian journal of forest research, 1998, Vol. 28, No 11, pp. 1636–1647.

Vesterdal L., Ritter E., Gundersen P., Change in soil organic carbon following afforestation of former arable land, Forest ecology and management, 2002, Vol. 169, No 1–2, pp. 137–147.

Vesterdal L., Clarke N., Sigurdsson B. D., Gundersen P., Do tree species influence soil carbon stocks in temperate and boreal forests? Forest Ecology and Management, 2013, Vol. 309, pp. 4–18.

Volk T. A., Verwijst T., Tharakan P. J., Abrahamson L. P., White E. H., Growing fuel: a sustainability assessment of willow biomass crops, Frontiers in Ecology and the Environment, 2004, Vol. 2 (8), pp. 411–418.

Walmsley J. D., Jones D. L., Reynolds B., Price M. H., Healey J. R., Whole tree harvesting can reduce second rotation forest productivity, Forest Ecology and Management, 2009, Vol. 257, No 3, pp. 1104–1111.

Warren K. L., Ashton M. S., Change in soil and forest floor carbon after shelterwood harvests in a New England Oak–Hardwood Forest, USA, International Journal of Forestry Research, 2014, Vol. 2014, Article ID 527236.

Wiesmeier M., Prietzel J., Barthold F., Spörlein P., Geuß U., Hangen E., Kögel-Knabner I., Storage and drivers of organic carbon in forest soils of southeast Germany (Bavaria)—Implications for carbon sequestration, Forest ecology and management, 2013, Vol. 295, pp. 162–172.

Zabowski D., Chambreau D., Rotramel N., Thies W. G., Long-term effects of stump removal to control root rot on forest soil bulk density, soil carbon and nitrogen content, Forest Ecology and Management, 2008, Vol. 255, No 3–4, pp. 720–727.

Zakonoproekt N 1116605–7 Ob ogranichenii vybrosov parnikovyh gazov (On limiting greenhouse gas emissions), available at: https://goo.su/LSlh9h (February 08, 2022).

Zhang X. Guan D., Li W., Sun D., Jin C., Yuan F., Wu J., The effects of forest thinning on soil carbon stocks and dynamics: A meta-analysis, Forest Ecology and Management, 2018, Vol. 429, pp. 36–43.

Zhou D., Zhao S. Q., Liu S., Oeding J., A meta-analysis on the impacts of partial cutting on forest structure and carbon storage, Biogeosciences, 2013, Vol. 10, pp. 3691–3703.