• DOI 10.31509/2658-607x-202252-106
  • УДК 630*23

CAN ARTIFICIAL REFORESTATION ALWAYS BE A FOREST CLIMATIC PROJECT?

V. N. Shanin1, 2, 3*, P. V. Frolov1,3, V. N. Korotkov3

1Institute of Physico-Chemical and Biological Problems in Soil Science of the RAS, Federal Research Centre “Pushchino Scientific Centre of Biological Research RAS”

 Institutskaya st., 2, bld. 2, Pushchino, Moscow region, 142290, Russia

2Center for Forest Ecology and Productivity of the RAS

Profsoyuznaya st. 84/32 bldg. 14, Moscow, 117997, Russia

3Yu. A. Izrael Institute of Global Climate and Ecology

Glebovskaya st. 20B, Moscow, 107258, Russia

 

*E-mail: shaninvn@gmail.com

Received: 23.05.2022

Revised: 15.06.2022

Accepted: 20.06.2022

Currently, forest climatic projects aimed at enhancing the carbon sequestration in forest ecosystems are becoming very popular. The main requirements for such projects include additionality, permanence and the absence of leakage. Compliance with these requirements ensures that the project fulfils the tasks at which it is aimed. Predictive modelling can be one of the tools for checking the compliance of forest climate projects with the above principles. The purpose of the study was to assess the prospects for carbon accumulation during the implementation of reforestation projects in the Krasnoyarsk and Irkutsk regions. An assessment of the carbon balance in the territory of artificial reforestation projects was carried out at the baseline (natural regeneration of Betula spp. and Populus tremula L.) and during the implementation of the forest climatic project (planting of Pinus sylvestris L.) with a forecast for 100 years. The results show that during the implementation of the project, the achieved level of emissions is higher and the level of carbon sequestration is lower compared to the baseline, which contradicts the principle of additionality, and, therefore, artificial reforestation cannot be considered as a forest climatic project. The highest efficiency in carbon sequestration for mixed plantations is predicted for mixtures of Pinus sylvestris with 20–30 percent of small-leaved species (Betula spp. and Populus tremula). However, the implementation of artificial reforestation projects can be essential for the reproduction of valuable forest resources, but in this case it is necessary to take into account the way the obtained phytomass of trees is used, since the length of the carbon conservation period will depend on this.

Key words: forest climatic projects, reforestation, mixed plantations, carbon budget, greenhouse gases, predictive modelling

 

REFERENCES

Ahtikoski A., Rämö J., Juutinen A., Shanin V., Mäkipää R., Continuous cover forestry and cost of carbon abatement on mineral soils and peatlands, Frontiers in Environmental Science, 2022, Vol. 10, ID 837878. DOI: 10.3389/fenvs.2022.83787.

Bogorodskaya A. V., Ivanova G. A., Mikrobiologicheskiy monitoring sostoyaniya pochv posle pozharov v sosnovo-listvennichnykh nasazhdeniyakh nizhnego Priangar’ya (Microbiological monitoring of the state of soils after fires in pine-larch plantations of the lower Angara region), Khvoynye boreal’noy zony, 2011, Vol. XXVIII, No 1–2, pp. 98–106.

Bulygina O. N., Razuvaev V. N., Trofimenko L. T., Shvets N. V., Opisanie massiva dannykh srednemesyachnoy temperatury vozdukha na stantsiyakh Rossii (Description of the data array of average monthly air temperature at stations in Russia). Certificate of state registration of the database No 2014621485, available at: http://meteo.ru/data/156-temperature#описание-массива-данных (December 11, 2021).

Bykhovets S. S., Komarov A. S., A simple statistical model of soil climate with a monthly step, Eurasian Soil Science, 2002, Vol. 35, No 4, pp. 392–400.

Cavard X., Bergeron Y., Chen H. Y. H., Paré D., Laganiére J., Brassard B., Competition and facilitation between tree species change with stand development, Oikos, 2011, Vol. 120, pp. 1683–1695. DOI: 10.1111/j.1600-0706.2011.19294.x.

Chertov O., Bhatti J. S., Komarov A. Impact of temperature increase and precipitation alteration at climate change on forest productivity and soil carbon in boreal forest ecosystems in Canada and Russia: Simulation approach with the EFIMOD model, In: Climate Change and Variability, 2010. pp. 303–326. DOI: 10.5772/9814.

Chertov O. G., Komarov A. S., Nadporozhskaya M. A., Bykhovets S. S., Zudin S. L., ROMUL — a model of forest soil organic matter dynamics as a substantial tool for forest ecosystem modeling, Ecological Modelling, 2001, Vol. 138, pp. 289–308, DOI: 10.1016/S0304-3800(00)00409-9.

Chertov O., Komarov A., Shaw C., Bykhovets S., Frolov P., Shanin V., Grabarnik P., Priputina I., Zubkova E., Shashkov M., Romul_Hum — A model of soil organic matter formation coupling with soil biota activity. II. Parameterisation of the soil food web biota activity, Ecological Modelling, 2017a, Vol. 345, pp. 125–139, DOI: 10.1016/j.ecolmodel.2016.10.024.

Chertov O., Shaw C., Shashkov M., Komarov A., Bykhovets S., Shanin V., Grabarnik P., Frolov P., Kalinina O., Priputina I., Zubkova E., Romul_Hum model of soil organic matter formation coupled with soil biota activity. III. Parameterisation of earthworm activity, Ecological Modelling, 2017b, Vol. 345, pp. 140–149, DOI: 10.1016/j.ecolmodel.2016.06.013.

Frolov P. V., Shanin V. N., Zubkova E. V., Bykhovets S. S., Grabarnik P. Ya., CAMPUS-S — The model of ground layer vegetation populations in forest ecosystems and their contribution to the dynamics of carbon and nitrogen, I. Problem formulation and description of the model, Ecological Modelling, 2020a, Vol. 431, ID 109184. DOI: 10.1016/j.ecolmodel.2020.109184.

Frolov P. V., Zubkova E. V., Shanin V. N., Bykhovets S. S., Mäkipää R., Salemaa M., CAMPUS-S — The model of ground layer vegetation populations in forest ecosystems and their contribution to the dynamics of carbon and nitrogen. II. Parameterization, validation and simulation experiments, Ecological Modelling, 2020b, Vol. 431, ID 109183, DOI: 10.1016/j.ecolmodel.2020.109183.

Grabarnik P. Ya., Chertov O. G., Chumachenko S. I., Shanin V. N., Khanina L. G., Bobrovskiy M. V., Bykhovets S. S., Frolov P. V., Integratsiya imitatsionnykh modeley dlya kompleksnoy otsenki ekosistemnykh uslug lesov: metodicheskie podkhody (Integration of simulation models for the integrated assessment of forest ecosystem services: methodological approaches), Matematicheskaya biologiya i bioinformatika, 2019a, Vol. 14, No 2, pp. 488–499. DOI: 10.17537/2019.14.488.

Grabarnik P. Ya., Shanin V. N., Chertov O. G., Priputina I. V., Bykhovets S. S., Petropavlovskiy B. S., Frolov P. V., Zubkova E. V., Shashkov M. P., Frolova G. G., Modelirovanie dinamiki lesnykh ekosistem kak instrument prognozirovaniya i upravleniya lesami (Modelling the dynamics of forest ecosystems as a tool for forecasting and forest management), Lesovedenie, 2019b, No 6, pp. 488–500, DOI: 10.1134/S0024114819030033.

Grozovskaya I. S., Khanina L. G., Smirnov V. E., Bobrovskiy M. V., Romanov M. S., Glukhova E. M., Biomassa napochvennogo pokrova v elovykh lesakh Kostromskoy oblasti (Biomass of the ground cover in the spruce forests of the Kostroma region), Lesovedenie, 2015, No 1, pp. 63–76.

Gutiérrez-Salazar P., Medrano-Vizcaíno P., The effects of climate change on decomposition processes in Andean Paramo ecosystem-synthesis, a systematic review, Applied Ecology and Environmental Research, 2019, Vol. 17, pp. 4957–4970, DOI: 10.15666/aeer/1702_49574970.

Hilli S., Stark S., Derome J., Litter decomposition rates in relation to litter stocks in boreal coniferous forests along climatic and soil fertility gradients, Applied Soil Ecology, 2010, Vol. 46, No 2, pp. 200–208, DOI: 10.1016/j.apsoil.2010.08.012.

Il’in B. M., Bulygina O. N., Bogdanova E. G., Veselov V. M., Gavrilova S. Yu., Opisanie massiva mesyachnykh summ osadkov, s ustraneniem sistematicheskikh pogreshnostey osadkomernykh priborov, (Description of the array of monthly precipitation sums, with the elimination of systematic errors of precipitation gauges), available at: http://meteo.ru/data/506-mesyachnye-summy-osadkov-s-ustraneniem-sistematicheskikh-pogreshnostej-osadkomernykh-priborov#описание-массива-данных (December 11, 2021).

Jia Y., Yu G., Gao Y., He N., Wang Q., Jiao C., Zuo Y., Global inorganic nitrogen dry deposition inferred from ground- and space-based measurements, Nature Scientific Reports, 2016, Vol. 6, ID 19810. DOI: 10.1038/srep19810.

Juutinen A., Ahtikoski A., Mäkipää R., Shanin V., Effect of harvest interval and intensity on the profitability of uneven-aged management of Norway spruce stands, Forestry: An International Journal of Forest Research, 2018, Vol. 91, No 5, pp. 589–602, DOI: 10.1093/forestry/cpy018.

Juutinen A., Shanin V., Ahtikoski A., Rämö J., Mäkipää R., Laiho R., Sarkkola S., Laurén A., Penttilä, T., Hökkä H., Saarinen M., Profitability of continuous-cover forestry in Norway spruce dominated peatland forest and the role of water table, Canadian Journal of Forest Research, 2021, Vol. 51, No 6, pp. 859–870, DOI: 10.1139/cjfr-2020-0305.

Komarov A. S., Chertov O. G., Zudin S. L., Nadporozhskaya M., Mikhailov A., Bykhovets S., Zudina E., Zoubkova E., EFIMOD 2 — A model of growth and cycling of elements in boreal forest ecosystems, Ecological Modelling, 2003, Vol. 170, No 2–3, pp. 373–392, DOI: 10.1016/S0304-3800(03)00240-0.

Komarov A., Chertov O., Bykhovets S., Shaw C., Nadporozhskaya M., Frolov P., Shashkov M., Shanin V., Grabarnik P., Priputina I., Zubkova E., Romul_Hum model of soil organic matter formation coupled with soil biota activity. I. Problem formulation, model description, and testing, Ecological Modelling, 2017a, Vol. 345, pp. 113–124, DOI: 10.1016/j.ecolmodel.2016.08.007.

Komarov A. S., Ginzhul L. K., Shanin V. N., Bykhovets S. S., Bobkova K. S., Kuznetsov M. A., Manov A. V., Osipov A. F., Pattern of biomass partitioning into fractions of boreal trees, Biology Bulletin, 2017b, Vol. 44, No 6, pp. 626–633, DOI: 10.1134/S1062359017060061.

Korotkov V. N., Kontseptsiya vosstanovleniya raznovozrastnykh polidominantnykh khvoyno-shirokolistvennykh lesov Vostochnoy Evropy (The concept of restoration of uneven-aged polydominant coniferous-broad-leaved forests of Eastern Europe), Ustoychivoe lesopol’zovanie, 2016, No 3 (47), pp. 2–7.

Kuzyakov Y., Subbotina I., Chen H., Bogomolova I., Xu X., Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling, Soil Biology and Biochemistry, 2009, Vol. 41, No 2, pp. 210–219, DOI: 10.1016/j.soilbio.2008.10.016.

Lehmann J., Kleber M., The contentious nature of soil organic matter, Nature, 2015, Vol. 528, pp. 60–68, DOI: 10.1038/nature16069.

Lehtonen A., Linkosalo T., Peltoniemi M., Sievänen R., Mäkipää R., Tamminen P., Salemaa M., Nieminen T., Ťupek B., Heikkinen J., Komarov A., Forest soil carbon stock estimates in a nationwide inventory: evaluating performance of the ROMULv and Yasso07 models in Finland, Geoscientific Model Development, 2016, Vol. 9, No 11, pp. 4169–4183, DOI: 10.5194/gmd-9-4169-2016.

Lippke B., Puettmann M., Oneil E., Oliver C. D., The plant a trillion trees campaign to reduce global warming — Fleshing out the concept, Journal of Sustainable Forestry, 2021, Vol. 40, No 1, pp. 1–31. DOI: 10.1080/10549811.2021.1894951.

Lukina N. V., Geraskina A. P., Gornov A. V., Shevchenko N. E., Kuprin A. V., Chernov T. I., Chumachenko S. I., Shanin V. N., Kuznetsova A. I., Tebenkova D. N., Gornova M. V., Biodiversity and climate-regulating functions of forests: current issues and research prospects, Forest Science Issues, 2021, Vol. 4, No 1, pp. 1–60, DOI: 10.31509/2658-607x-202141k-60.

Metodicheskie ukazaniya po kolichestvennomu opredeleniyu ob’ema pogloshcheniya parnikovykh gazov (Guidelines for quantifying greenhouse gas sequestration), approved by Order of the Ministry of Natural Resources of Russia dated 30.06.2017 No 20-p, available at: http://docs.cntd.ru/document/456077289 (June 05, 2022).

Modelirovanie dinamiki organicheskogo veshchestva v lesnykh ekosistemakh (Modelling the dynamics of organic matter in forest ecosystems), Kudeyarov V. N. (ed.), Moscow: Nauka, 2007. 380 p.

Morén A. S., Lindroth A., CO2 exchange at the floor of a boreal forest, Agricultural and Forest Meteorology, 2000, Vol. 101, No 1, pp. 1–14, DOI: 10.1016/S0168-1923(99)00160-4.

Muukkonen P., Mäkipää R., Empirical biomass models of understorey vegetation in boreal forests according to stand and site attributes, Boreal Environmental Research, 2006, Vol. 11, No 5, pp. 355–369.

Piñeiro G., Perelman S., Guerschman J. P., Paruelo J. M., How to evaluate models: Observed vs. predicted or predicted vs. observed? Ecological Modelling, 2008, Vol. 216, No 3, pp. 316–322, DOI: 10.1016/j.ecolmodel.2008.05.006.

Pukkala T., Lähde E., Laiho O. Continuous cover forestry in Finland — Recent research results, In: Continuous Cover Forestry, second ed., Pukkala T., von Gadow K. (eds.), Berlin-Heidelberg: Springer, 2012, pp. 85–128, DOI: 10.1007/978-94-007-2202-6_3.

Shanin V. N., Komarov A. S., Khoraskina Yu. S., Bykhovets S. S., Linkosalo T., Mäkipää R., Carbon turnover in mixed stands: Modelling possible shifts under climate change, Ecological Modelling, 2013, Vol. 251, pp. 232–245, DOI: 10.1016/j.ecolmodel.2012.12.015.

Shanin V. N., Komarov A. S., Mäkipää R., Tree species composition affects productivity and carbon dynamics of different site types in boreal forests, European Journal of Forest Research, 2014, Vol. 133, pp. 273–286, DOI: 10.1007/s10342-013-0759-1.

Shanin V., Mäkipää R., Shashkov M., Ivanova N., Shestibratov K., Moskalenko S., Rocheva L., Grabarnik P., Bobkova K., Manov A., Osipov A., Burnasheva E., Bezrukova M., New procedure for the simulation of belowground competition can improve the performance of forest simulation models, European Journal of Forest Research, 2015, Vol. 134, pp. 1055–1074, DOI: 10.1007/s10342-015-0909-8.

Shanin V. N., Grabarnik P. Ya., Bykhovets S. S., Chertov O. G., Priputina I. V., Shashkov M. P., Ivanova N. V., Stamenov M. N., Frolov P. V., Zubkova E. V., Ruchinskaya E. V., Parametrizatsiya modeli produktsionnogo protsessa dlya dominiruyushchikh vidov derev’ev Evropeyskoy chasti RF v zadachakh modelirovaniya dinamiki lesnykh ekosistem (Parameterization of the production process model for the dominant tree species of the European part of the Russian Federation in the problems of modelling the dynamics of forest ecosystems), Matematicheskaya biologiya i bioinformatika, 2019, Vol. 14, No 1, pp. 54–76, DOI: 10.17537/2019.14.54.

Shanin V. N., Grabarnik P. Ya., Shashkov M. P., Ivanova N. V., Bykhovets S. S., Frolov P. V., Stamenov M. N., Crown asymmetry and niche segregation as an adaptation of trees to competition for light: conclusions from simulation experiments in mixed boreal stands, Mathematical and Computational Forestry and Natural-Resource Sciences, 2020, Vol. 12, No 1, pp. 26–49, DOI: 10.5281/zenodo.3759256.

Shanin V., Juutinen A., Ahtikoski A., Frolov P., Chertov O., Rämö J., Lehtonen A., Laiho R., Mäkiranta P., Nieminen M., Laurén A., Sarkkola S., Penttilä T., Ťupek B., Mäkipää R. Simulation modelling of greenhouse gas balance in continuous-cover forestry of Norway spruce stands on nutrient-rich drained peatlands, Forest Ecology and Management, 2021, Vol. 496, ID 119479, DOI: 10.1016/j.foreco.2021.119479.

Sherstyukov A. B., Opisanie massiva sutochnykh dannykh o temperature pochvy na glubinakh do 320 sm po meteorologicheskim stantsiyam Rossiyskoy Federatsii (versiya 2) (Description of the array of daily data on soil temperature at depths up to 320 cm for meteorological stations of the Russian Federation (version 2)), available at: http://meteo.ru/data/164-soil-temperature#описание-массива-данных (Decemder 11, 2021).

Shvidenko A. Z., Shchepashchenko D. G., Nil’sson S., Buluy Yu. I., Tablitsy i modeli khoda rosta i produktivnosti nasazhdeniy osnovnykh lesoobrazuyushchikh porod Severnoy Evrazii (normativno-spravochnye materialy). 2-e izd. (Tables and models of growth and productivity of plantations of the main forest-forming species of Northern Eurasia (regulatory reference materials). 2nd ed.), Moscow: Federal’noe agentstvo lesnogo khozyaystva i Mezhdunarodnyy institut prikladnogo sistemnogo analiza, 2008, 886 p.

Stuble K. L., Ma S., Liang J., Luo Y., Classen A. T., Souza L., Long-term impacts of warming drive decomposition and accelerate the turnover of labile, not recalcitrant, carbon, Ecosphere, 2019, Vol. 10, No 5, ID e02715, DOI: 10.1002/ecs2.2715.

The greenhouse gas protocol. The land use, land-use change, and forestry guidance for GHG project accounting. Washington: Word Resource Institute, 2006. 97 p., available at: https://ghgprotocol.org/standards/project-protocol (June 05, 2022).

Ťupek B., Minkkinen K., Kolari P., Starr M., Chan T., Alm J., Vesala T., Laine J., Nikinmaa E. Forest floor versus ecosystem CO2 exchange along boreal ecotone between upland forest and lowland mire, Tellus B, 2008, Vol. 60, No 2, pp. 153–166, DOI: 10.1111/j.1600-0889.2007.00328.x

Usol’tsev V. A., Fitomassa lesov Severnoy Evrazii: baza dannykh i geografiya (Phytomass of Northern Eurasia forests: database and geography), Ekaterinburg: UrO RAN, 2001. 708 p.

Usol’tsev V. A., Fitomassa lesov Severnoy Evrazii: normativy i elementy geografii (Phytomass of Northern Eurasia forests: standards and elements of geography), Ekaterinburg: UrO RAN, 2002. 763 p.

Usol’tsev V. A., Biologicheskaya produktivnost lesov Severnoy Evrazii: metody, baza dannykh i ee prilozheniya (Biological productivity of Northern Eurasian forests: methods, database and applications), Ekaterinburg: UrO RAN, 2007. 636 p.

Usol’tsev V. A., Fitomassa i pervichnaya produktsiya lesov Evrazii (Phytomass and primary production of Eurasian forests), Ekaterinburg: UrO RAN, 2010. 570 p.

Usol’tsev V. A., Produktsionnye pokazateli i konkurentnye otnosheniya derev’ev. Issledovanie zavisimostey (Production indicators and competitive relations of trees, Dependency research), Ekaterinburg: UGLTU, 2013, 556 p.

Usol’tsev V. A., Biologicheskaya produktivnost’ lesoobrazuyushchikh porod v klimaticheskikh gradientakh Evrazii (k menedzhmentu biosfernykh funktsiy lesov) (Biological productivity of forest-forming species in the climatic gradients of Eurasia (towards the management of the biospheric functions of forests)), Ekaterinburg: UGLTU, 2016. 383 p.

Verified Carbon Standard, v 4.2. Issued: 19 September 2019. Updated: 20 January 2022. available at: https://verra.org/project/vcs-program/rules-and-requirements/ (June 05, 2022).

Vorob’eva L. A., Lopukhina O. V., Salpagarova I. A., Rastorova O. G, Andreev D. P., Ladonin D. V., Fedorova N. N., Kasatkina G. A., Glebova G. I., Rudakova T. A., Teoriya i praktika khimicheskogo analiza pochv (Theory and practice of chemical analysis of soils), Moscow: GEOS 2006, 400 p.

Wihersaari M., Evaluation of greenhouse gas emission risks from storage of wood residue, Biomass and Bioenergy, 2005, Vol. 28, No 5, pp. 444–453, DOI: 10.1016/j.biombioe.2004.11.011.

Zinchenko S. I., Kharakteristika otdel’nykh fizicheskikh i pochvenno-gidrologicheskikh svoystv metrovogo profilya seroy lesnoy pochvy (Characteristics of individual physical and soil-hydrological properties of the 1-m profile of grey forest soil), Vladimirskiy zemledelets, 2018, No 1 (83), pp. 2–5, DOI: 10.24411/2225-2584-2018-00001.